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1 Introduction

Classical mechanics is the study of the motion of “material bodies”[3]. First-semester college physics (force,
work, energy, momentum, torque, tension, pulleys, masses on springs, etc.) lays the groundwork for this,
but the field is far richer, and physics majors take at least one more full semester of classes on this topic.
These notes give an extremely brief introduction to three of the most interesting topic areas that are treated
in such a course:

• Lagrangians and Hamiltonians

Lagrangians and Hamiltonians are different (and very useful) ways to write F = ma that let you avoid
having to deal with vector-valued force balances. They not only make hideous mechanics problems
easy, but they also expose deep symmetries and conserved properties.

• Rigid-body dynamics

Rigid-body dynamics is the study of how objects like baseballs, planets, tops, and snowflakes move
through space.

• Gravitation

Gravitation concerns the intricacies of the n-body problem: n masses pulling on one another in the
standard GmM/r2 way. For three or more bodies, this can get complicated and interesting.

At the end of this section of the course, we will put these building blocks together to understand how
celestial bodies interact with one another and move through space...often chaotically.

These notes only scratch the surface of this field; I describe methods and concepts using examples,
without doing any of the derivation or justification. There are dozens of textbooks available if anyone is
interested in probing further into this material. A few of the best, from a dynamical systems point of
view, are Arnol’d[1] and Goldstein[3], both of which are on reserve for this course; the former is somewhat
heavier going than the latter.

2 Lagrangians and Hamiltonians

Lagrangians and Hamiltonians are mathematical techniques for solving mechanics problems — that is,
given a system, they help you find the ODE that governs its behavior. The word “Hamiltonian,” as an
adjective, has another meaning: that a system does not gain or lose energy over the course of time from/to
processes like friction. “Hamiltonian” is synonymous with “conservative” or “non-dissipative.” In these
notes, I will only address conservative systems.
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2.1 Lagrangians

To derive the equations of motion of a conservative system using the Lagrangian, you follow a seven-step
procedure:

1. figure out how many degrees of freedom the system has

2. choose one “generalized coordinate” for each

3. write down the potential energy, V , in terms of those coordinates

4. write down the kinetic energy, T , in terms of those coordinates

5. write down the Lagrangian: L = T − V

6. take a bunch of derivatives

7. plug those derivatives into Lagrange’s equations:

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= 0 (1)

I’ll go through an example that shows these steps. Consider a ball on a wedge-shaped block that is
sliding at constant velocity across a plane:

wedgev

x

y

α

q

H

At first glance, it may seem that this problem has two degrees of freedom: that you’d need to write
down a force balance in x and another one in y to derive the equations of motion that describe the position
of the ball, and that the solutions to those equations would have four pieces: x(t), ẋ(t), y(t), and ẏ(t)1.
However, there’s an extra constraint in the problem: the “normal” force that keeps the ball on the surface
of the wedge (and not inside it). Because of this, the “ball on a sliding wedge” system in the picture above
really has only one degree of freedom. The constraint force between ball and surface has reduced the “size”
of the problem.

The second task in the procedure is to pick a coordinate that “measures” the system’s state in the
physical dimension parametrized by that degree of freedom. Here, one obvious2 choice is the distance from
ball to the top of the wedge (q, in the previous figure). Good choices of coordinates are important to the
success of the procedure; if you pick them well, the math will be easy and the symmetries obvious. If you
choose an “unnatural” coordinate — say, the angle θ between the x-axis and the line from the ball to the
origin:

1Recall that the phase or state space has two axes — position and velocity — for each degree of freedom, and the number

of axes is called the dimension of the system.
2Good coordinate choice isn’t initially — or always — “obvious;” doing it well is a matter of practice.
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wedgev

x

θ

...the math will be hard and the symmetries invisible.

The third and fourth tasks involve writing the potential and kinetic energies in terms of these coordi-
nates, and this is where the requirement that the system is conservative kicks in. In a nonconservative (or
dissipative) system, the word “potential” doesn’t even make sense: if the amount of work you do to move
from one place to another in the field depends on the path taken (e.g., if there’s friction), then you simply
can’t talk about potential or potential energy.

Higher-level tangent:

The formal way to test whether a system is conservative is to take the curl or path integral of
the force field; from the dim recesses of your vector calculus memory, you may recall a formula
like:

▽× ~F =

∮

~F · ~dr

If this whole mess is zero, one does the same amount of work going from point A to point B,
independent of the path taken, and the field is conservative.

Liouville’s Theorem: the “phase flow” of a conservative system — how the system evolves
under the influence of a conservative field3, as plotted in phase space — preserves volumes.
That is, a unit-volume cube of initial conditions will deform over time (as you investigated in
PS7), but its volume will remain constant.

T is generally the easier of the two energies to write down; it usually only involves figuring out how to
express 1

2
mv2 in terms of the generalized coordinates qi. In the sliding wedge example, x = vwedget+q cosα

and y = H − q sinα. Since v2 = ẋ2 + ẏ2,

T =
1

2
m

[

q̇2 cos2 α+ 2q̇vwedge cosα+ v2

wedge + q̇2 sin2 α
]

In simple mechanics problems, V is usually just mgh — again, written in terms of the generalized
coordinates. The only difficult part here is getting the potential energy to be zero at the “lowest” state.
For the wedge, V = mg(H − q sinα), so the Lagrangian is:

L = T − V =
1

2
m(q̇2 + 2q̇V cosα+ V 2) −mg(H − q sinα)

Note the combination of the q̇2 sin2 α and q̇2 cos2 α terms into q̇2.

Lagrange’s equations require various partial and total derivatives of L. The only hard part of this is
remembering what’s a function of time (e.g., q(t) and q̇(t)) and what’s constant (e.g., V , α) and taking
the derivatives appropriately; the former play different roles when you’re doing a d

dt derivative and a ∂
∂t

derivative. In the sliding wedge problem,

∂L

∂q̇
= mq̇ +mvwedge cosα

3Here, “field” can mean the physical force field or the ODE that models it.
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∂L

∂q
= mg sinα

d

dt

(

∂L

∂q̇i

)

= mq̈

Plugging these derivatives into Lagrange’s equations yields

mq̈ −mg sinα = 0

This 2nd-order ODE is the equation of motion for the system. If you pull it apart into two first-order ODEs
(cf., PS3 problem 2), you get something4 like:

q̇ = ζ

ζ̇ = g sinα

If you chuck these equations into your RK4 code (PS4 or PS5), the q(t) and ζ(t) = q̇(t) values that you
get out are the coordinates of points on the state-space trajectory of the system. Note that the equation is
pretty simple in retrospect — it just looks like the ball is “falling” under the influence of a reduced gravity
— but that simplicity probably wasn’t apparent to you from your initial examination of the problem.

The sliding block example has a single degree of freedom and thus a single coordinate. An n-degree
of freedom system requires you to choose n generalized coordinates qi and the seven-step Lagrangian
process requires you to take 3n derivatives and yields n 2nd-order ODEs. The next example, the spherical
pendulum, will demonstrate how the whole procedure works for a two degree-of-freedom problem.

Consider a ball of mass m on the end of a massless rigid rod of length l that is attached to a universal
joint (something that lets the rod swing in all directions, not just in a plane). The natural coordinates
to choose in this case are some sort of off-vertical angle θ — measured either from hanging straight down
or from standing straight up — and an azimuthal angle φ. The latter is like longitude and former is like
either latitude or co-latitude, depending on where θ = 0 is defined. The rest of this problem assumes θ = 0
when the pendulum is at its inverted point and θ = π when it is hanging straight down. Most of the work
involved in writing the T and V is a matter of converting between cartesian and spherical coordinates.
The formula for converting v2 to spherical coordinates is:

v2 = ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ

Here, φ is the angle in the x − y plane and θ is the angle from the positive z axis. Since r is constant
(r = l) in the pendulum, this means that the kinetic energy is

T =
1

2
m(l2θ̇2 + l2φ̇2 sin2 θ)

The potential energy V should be zero when the pendulum is hanging down and maximum when it is
standing up; in between, it moves with the cosine of θ:

V = mgl(1 + cos θ)

(If we had defined θ = 0 as hanging down and θ = π as standing up, V would be mgl(1 − cos θ) instead.)
Combining these, we get:

L =
1

2
m(l2θ̇2 + l2φ̇2 sin2 θ) −mgl(1 + cos θ)

The various derivatives are
∂L

∂θ̇
= ml2θ̇

∂L

∂θ
= ml2φ̇2 sin θ cos θ +mgl sin θ

4You can choose whatever variable name you want for the auxiliary variable; I randomly chose ζ here.
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d

dt

(

∂L

∂θ̇

)

= ml2θ̈

∂L

∂φ̇
= ml2φ̇ sin2 θ

∂L

∂φ
= 0

d

dt

(

∂L

∂φ̇

)

= ml2φ̈ sin2 θ + 2ml2φ̇θ̇ sin θ cos θ

Plugging those into Lagrange’s equations yields

ml2θ̈ −ml2φ̇2 sin θ cos θ −mgl sin θ = 0

and
ml2φ̈ sin2 θ + 2ml2φ̇θ̇ sin θ cos θ = 0

These two second-order ODEs are the equations of motion for the system.

2.2 Symmetries and the connection to chaos

Note that the coordinate φ does not appear in the Lagrangian of the spherical pendulum. This is not just
an algebraic technicality; it is a sign of a deep symmetry in the system. If a coordinate is absent from L,
it is called a cyclic coordinate. If you look at Lagrange’s equations:

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= 0

you can see that φ’s absence from L means that

d

dt

(

∂L

∂φ̇

)

= 0

This means that there is a conserved quantity in the system — the conjugate momentum5 ∂L
∂φ̇

. In this case,

the conserved quantity is the angular momentum of the pendulum, and there is a corresponding symmetry
in the system around the axis parametrized by φ.

In the pendulum, this symmetry is pretty obvious, but in other, more-complicated systems the existence
of a cyclic coordinate may be the only way to tell if such a symmetry exists. In general, these conserved
quantities are called constants of the motion or integrals of the motion; if 2n of them exist in an n de-
gree-of-freedom system6, then it is called integrable and cannot exhibit chaotic behavior. One of Michel
Hénon’s great contributions to dynamics was to prove that the three-body problem was nonintegrable.

2.3 Problems that involve other forces

If the system is affected by forces other than gravity (e.g., a mass on a spring, a charged pendulum moving
in an environment where both magnetic and gravitational fields are active, or even a proton under the
influence of the strong and weak forces), the potential V will have other terms besides the gravitational
potential energy mgh. The potential energy stored in a spring, for example, is 1

2
kx2, where x is how far

the end of the spring is from its unloaded equilibrium position. For electromagnetic fields and relativistic
velocities, potential energy is a lot more complicated; come see me if you’re interested in deriving V for
problems like this.

The point I want to emphasize here is that extremely hairy physics complications simply add terms to
the V part (and, rarely, the T part) of the Lagrangian in a fairly straightforward way, and there’s no need
to change the seven-step procedure.

5“conjugate” to φ
6which has dimension = 2n
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2.4 Hamiltonians

Deriving the equations of motion using the Hamiltonian (H) is a lot like the Lagrangian procedure, except
that you use H(qi, pi) = T (qi, pi)+V (qi, pi) instead of L(qi, q̇i) = T (qi, q̇i)−V (qi, q̇i) — where the conjugate

momentum pi(t) = mq̇i(t) — and you plug and chug using Hamilton’s equations:

q̇i =
∂H

∂pi
(2)

−ṗi =
∂H

∂qi

...instead of Lagrange’s equations:
d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= 0

The results are also slightly different, but only in format; instead of n 2nd-order ODEs, you get 2n
1st-order ODEs.

3 Rigid-Body Dynamics

To describe the position of a single mass in three-space, you need three coordinates and six state-space
axes (two for each coordinate). A system of n masses has 3n degrees of freedom (= coordinates) and thus
has a 6n-dimensional state space; its dynamics are governed by a set of 6n first-order ODEs.

If you put n− 1 rods between the masses in a manner that fixes them rigidly in space:

n=7

...the resulting rigid body only has six degrees of freedom: three for position and three for orientation.
The rods act as constraints that reduce the dimension of the system, and the dynamics of the rota-
tion/translation of the object are governed by a set of six second-order ODEs.

The standard way to specify the orientation of a rigid body is to use the Euler angles θ, φ, and ψ:

φ

θ

ψ
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If you’re sitting on the object itself — that is, you’re in a body-fixed or center-of-mass frame of reference
— θ, φ, and ψ are all you need to describe the system’s state, and the equations of motion (EOMs) are
a 6th-order system instead of a 12th-order one. If you’re sitting in some space-fixed or inertial frame, you
need to specify three position coordinates as well. We’ll generally simplify things by assuming that friction
plays no role and that nobody’s applying any external torque to the object.

Given this framework, the way to think about the dynamics of rigid-body movement is to visualize
giving an object some initial translational and angular velocities and watching how those velocities evolve.
It’s easier if you punt the translational velocity and concentrate on rotation. One way you can play with
this is to put a rubber band around a book and throw it into the air, imparting some initial spin.

Experiment: try spinning the book purely in the θ direction, then purely in the φ direction and
purely in the ψ direction. Does it stay spinning in exactly the same way? You can also try
starting it with some angular velocity that doesn’t line up with these principal axes, but that
makes things hard to watch.

The way to work out the mathematics that describes this process is to write down conservation of
angular momentum, ~L. Note that ~L is a vector, not a scalar; direction matters. An object of mass m
located ~r away from some origin, O, moving with velocity ~v, has angular momentum ~L = m~r×~v around O.
Angular momentum, like regular momentum, is a conserved quantity, as you’ll explore in PS11. (That’s
how gyroscopes work.)

This kind of math requires some proficiency with vector calculus. For the purposes of refreshing your
knowledge about this stuff, I’ll start with a quick exercise. If you have an object rotating at some angular
velocity ~ω and you want to know how fast and in what direction some patch of stuff in that object is
actually moving, you use the equation ~v = ~ω×~r, where ~r is the vector from the center of mass to the patch
of stuff. Recall that ω can have components in the θ, φ, and ψ directions. Here’s a picture that should
help you visualize what these vectors look like:

v

center of
mass

ω

r

Note that the ~ω vector must pass through the center of mass. Use the right-hand rule to visualize the
cross-product: line your fingers up along ~ω and rotate them until they point at ~r. Your thumb now points
at ~v. To do this mathematically, use the 3 × 3 matrix equation:

~a×~b =

∣

∣

∣

∣

∣

∣

î ĵ k̂
ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

î, ĵ, k̂ are the unit vectors in the (x, y, z)-directions, respectively; these are also known as x̂, ŷ, and ẑ.

I won’t actually go through writing down conservation of angular momentum d~L
dt = 0; check out section

5.5–6 of Goldstein[3] if you’re interested. Here are the results:
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I1ω̇1 = (I2 − I3)ω2ω3 (3)

I2ω̇2 = (I3 − I1)ω3ω1

I3ω̇3 = (I1 − I2)ω1ω2

These are called the {Euler-Lagrange-Poincaré-Hamill} equations, after the various people who had roles
in their derivation. The Ii are the principal moments of inertia: how much the object “resists” rotation
around each of its principal axes7. A cube, for instance, has I1 = I2 = I3, a “triaxial” object like the one
in the Euler angles picture has I1 > I2 > I3, and an axisymmetric object like a top has I1 = I2 6= I3.

For a cube, the ELPH equations reduce to:

ω̇1 = 0

ω̇2 = 0

ω̇3 = 0

...which means that any initial angular velocity will remain unchanged forever. (Find a cubic object and
try this out.)

For a triaxial object with, say, I1 = 1/2, I2 = 1/3 and I3 = 1/4, the ELPH equations reduce to:

ω̇1 =
1

6
ω2ω3

ω̇2 = −
3

4
ω3ω1

ω̇3 =
2

3
ω1ω2

To do a traditional stability analysis of this system, I first find the fixed points, then linearize the equations
around the fixed points and see what the eigenstuff says about how perturbations will shrink and/or grow.
To find the fixed points, I set the equations to equal zero:

0 = ω2ω3

0 = ω3ω1

0 = ω1ω2

This condition is satisfied if any two of the ωi are zero:

(ω1, ω2, ω3) = (0, 0, a), (0, a, 0), (a, 0, 0)

for any a. That is, the system has an infinite number of fixed points. If I linearize the ELPH equations
around one of those points — say, the point (1, 0, 0) — I get a set of three first-order linear ODEs that tell
me about the local behavior near the fixed point:

ω̇1 = 0

ω̇2 = −3/4ω3

ω̇3 = 2/3ω2

If you look carefully at these equations, you’ll see that they imply that ω1 remains constant near this fixed
point, and that the other two equations look a lot like a simple harmonic oscillator (that is, a perturbation
in ω2 will couple into ω3 and vice versa, just like position and velocity in a mass on a spring). This kind
of behavior identifies (1, 0, 0) as an “elliptic fixed point.” Small perturbations in ω1 and/or ω2 near such a
point will not grow; rather, they will persist as a small, fixed-amplitude wobble. The (0, 0, 1) point is also

7Principal axes are defined as those that diagonalize the moment-of-inertia tensor. If this makes no sense, don’t worry.

That’s why it’s in a footnote.
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an elliptic fixed point, but if you linearize the ELPH equations around the fixed point (0, 1, 0), you find
that it’s an unstable or hyperbolic point — like the inverted point in a pendulum. Perturbations around
such a point will grow, so a small wobble will turn into a full-scale tumble very quickly. (Try this with
your rubber-banded book.)

Axisymmetric objects, like tops or planets, have all sorts of interesting dynamics. If I1 = I2 6= I3, the
ELPH equations become

ω̇1 = Ωω2

ω̇2 = −Ωω1

ω̇3 = 0

where Ω = I1−I3
I1

. The third equation says that the object’s ω3-type spin — along the spin axis of the top —
will remain constant; the first and second say that the spin axis precesses. (See pp209–211 of Goldstein[3]
for more information on this derivation.) Tops also nutate as they spin. Precession is the slow circular
oscillation of the spin axis around the vertical; nutation is a “nodding” motion superimposed on that.

You can also use Lagrangians or Hamiltonians to derive the equations of motion for rotating axisym-
metric objects. A top has three degrees of freedom, so we need three coordinates to describe it. The
natural choice is to use the three Euler angles. The kinetic energy is

T =
1

2
I1φ̇

2 sin2 φ+
1

2
I1θ̇

2 +
1

2
I3(ψ̇ + φ̇ cos θ)2

(This calculation is not obvious! See any of the cited textbooks for a derivation.) The potential energy is
MgR cos θ, where R is the radius from the point of the top to its center of mass. The Lagrangian is:

L =
1

2
I1φ̇

2 sin2 φ+
1

2
I1θ̇

2 +
1

2
I3(ψ̇ + φ̇ cos θ)2 −MgR cos θ

Note that φ and ψ are absent from this Lagrangian. Recall from section 2.2 that this means that these
are “cyclic coordinates,” and their existence implies that the system has two symmetries, along with two
corresponding “constants of the motion.” Recognizing this before diving into Lagrange’s equations makes
the algebra of the derivation of the equations of motion a bit easier.

The conditions under which the top precesses steadily — a situation that arises in physical tops and
in the ELPH equations — can also be derived from these equations of motion; one looks for solutions in
which the angle of inclination of the axis, θ, remains constant. I won’t go through this, but it turns out
that in this case both φ̇ and ψ̇ must be constant, so the axis of the top precesses around the vertical with
constant angular velocity Φ. For a given angle of inclination, there are two possible values for Φ.

In the case of the earth, an oblate spheroid whose equatorial radius exceeds its polar radius by about
21.4 km — an axisymmetric top! — the angle of inclination is 23.5 degrees and Φ ≈ 2π

26,000years . This
precession causes the pole of the Earth’s axis to move relative to the fixed stars. To those of us who
live on the surface, this is known as the “precession of the equinoxes” because the part of the sky that is
directly behind the sun when it rises on the vernal equinox moves through the constellations of the Zodiac
with a period of 26,000 years8. There are various interesting implications of the movement of the fixed
stars around the sky in a circle; among other things, Polaris will not be the “north star” indefinitely, and
one can date the pyramids by the small hole that was usually drilled out from the burial chamber so the
pharoah could see Sirius during the afterlife. Earth also nutates, with a tenth of an arc-second amplitude
and a period of 14 months. This is termed the “Chandler wobble.” All of this (and much more) is covered
in a wonderful book called Newton’s Clock: Chaos in the Solar System[6], which is on reserve for CSCI
4446/5446.

Many interesting properties of the earth-moon system (or any other primary/satellite combination, for
that matter) can be understood using the ideas in these notes. There are three stable equilibria to which

8Hence the “age of Aquarius” that began in the 1960s...
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systems like this evolve — hence the “dark side of the moon” ,the fact that most of the planets in the solar
system orbit around their longest axes, with those axes lined up perpendicular to the ecliptic.

The source of the Earth’s tides, which occur twice a day, is the moon’s pull: (1) on the ocean and (2)
on the earth itself:

ω

earth

bulge pulled out by moon

bulge left behind by earth

moon

Ω

Though I didn’t show these effects in the picture, the bulge on the moon side of the earth is bigger (which
is why one of the two daily tides is higher than the other), and the earth pulls up tides in the moon’s crust.
The sun also plays a role; the yearly differences in the earth’s tides — “spring” versus “neap” tides — are
caused by the sun and moon cancelling out and then ganging up as they move around the earth.

Now, think about what happens if Ω is greater than ω: the bulges on the earth and mood will “get
ahead” of the radial line joining the two objects, setting up a geometry where there is a differential pull
that tries to get those bulges back in line with the earth-moon radius vector. The same thing happens if
Ω < ω. The net result, over billions of years, has caused the system to evolve to a state where Ω = ω, so the
same side of the moon always faces the earth. This happens in any primary/satellite pair and, in general,
necessitates changing the energy of the bodies involved — through friction in their crusts and changes in
orbital radii.

The mechanics of the second and third equilibria (spin axis lined up with the longest axis of the object
and perpendicular to ecliptic) are beyond the scope of these notes; see Danby[2] for more details.

4 Gravitation

In classical mechanics, a point mass M pulls on another point mass m:

M

r

m

...in a manner described by the following equation:

~FmM =
−GmM~r

|~r3|
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(You probably learned this as −GmM
r2 ; that form of the equation omits the direction vector.) “Equal and

opposite” says that m pulls on M just as hard, and in the opposite direction:

~FMm =
GMm~r

|~r3|

If really big masses, big velocities, or small length scales are involved, you have to use different equations —
incorporating relativistic or quantum effects, respectively — but we won’t worry about that here. Gravity
is a conservative field. This means that a mass m accrues a certain amount of gravitational potential
energy mg∆h when you change its height by ∆h, no matter what path you take to do so.

A good general reference for the stuff covered in this section is Danby[2], which is on library reserve for
CSCI 4446/5446.

4.1 The Two-Body Problem

This section covers the derivation of the equations of motion for two bodies moving under the influence of
their mutual attraction (i.e., no other forces like friction, electromagnetics, a nearby black hole, ...). Here’s
a picture that gives the setup and the terminology:

r = r   - r

origin

2 1

m

m

2

1

r

r

2

1

The force exerted on m1 by m2 is:

~F12 = −Gm1m2

~r1 − ~r2
|(~r1 − ~r2)|3

Since ~F12 = m1~a1 and ~a1 = m1~̈r1, the equation of motion of m1 is

m1~̈r1 = −Gm1m2

~r1 − ~r2
|(~r1 − ~r2)|3

You get the other equation of motion by flipping the indices:

m2 ~̈r2 = −Gm2m1

~r2 − ~r1
|(~r2 − ~r1)|3

Pulling these apart into a system of first-order ODEs yields:

~̇r1 = ~v1 (4)

~̇v1 = −Gm2

~r1 − ~r2
|(~r1 − ~r2)|3

~̇r2 = ~v2

~̇v2 = −Gm1

~r2 − ~r1
|(~r2 − ~r1)|3
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These equations may look like a fourth-order system, but recall that ~r and ~v are three-vectors — ~r =
(xx̂+ yŷ+ zẑ) and ~v = (ẋx̂+ ẏŷ+ żẑ) — so equations (4) really describe a 12th-order system. The second
equation in the system above, for instance, is really

(ẍ1x̂+ ÿ1ŷ + z̈1ẑ) = −Gm2

(x1x̂+ y1ŷ + z1ẑ) − (x2x̂+ y2ŷ + z2ẑ)

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2

To pull this equation apart into its three constituent equations, you take all the x̂ parts from the left-hand
side and equate them to the x̂ parts from the right-hand side:

ẍ1 = −Gm2

(x1 − x2)

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2

...then repeat for ŷ and ẑ to get the other two equations. The first and third equations in the system (4)
are much simpler, but you’ll need to define some symbols for the components of ~v:

~̇r1 = ~v1

(ẋ1x̂+ ẏ1ŷ + ż1ẑ) = (u1x̂+ v1ŷ + w1ẑ)

ẋ1 = u1

ẏ1 = v1

ż1 = w1

The standard (and useful) way to simplify the two-body equations is to use relative coordinates: pretend
you’re sitting on one of the masses and write an equation to describe what you see the other one doing. If I
stick the origin of my coordinate system at m1, add equations (4) together, and use the vector ~r = ~r2 − ~r1
to rewrite the result, I get:

~̇r = ~v (5)

~̇v = −γ
~r

|~r|3

...where γ = G(m1 +m2).

Note that the ODE systems (4) and (5) have similar forms, so their solutions will be similar. These
solutions are fairly easy to figure out and not at all chaotic; they take the form of conic sections: ellipses,
parabolae, and hyperbolae. The implications of the close resemblance between the systems (4) and (5) are
interesting and somewhat hard to visualize: each of the two bodies is travelling on a conic section around
the other one. Though I haven’t shown the equations that justify it, it is also the case that both bodies
are on conic-section orbits around the center of mass.

One of Kepler’s Big Contributions — his first law — was a special case of this revelation about conic
sections being the only possible solution to the two-body problem: he figured out that planets follow
elliptical paths around the sun. The story of this is quite interesting; check out chapter 3 of [6] or the
middle third of The Sleepwalkers[5] if you’re interested.

Most of the orbits we’ll play with are ellipses. Here’s a picture that defines the geometry of an ellipse:

b

foci

ea

a
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a and b are called the semimajor and semiminor axes, respectively. The higher the eccentricity, e, the
skinnier the ellipse. The eccentricities of the orbits of the planets in the solar system are tabled below for
your interest:

mercury 0.206 saturn 0.056
venus 0.007 uranus 0.046
earth 0.017 neptune 0.010
mars 0.093 pluto 0.248
jupiter 0.048

Kepler’s second law says that a body on an elliptic orbit “sweeps out equal areas in equal times.” That
is, if you take pictures of some planet • at two different times ∆t apart:

star

...the areas between the ellipse and the two radii are equal. Among other things, this means that an
orbiting body moves faster near periapse, the point of closest approach, and slowly when it’s far away from
its primary. Astrophysicists typically specify where something is on its orbit using the orbital phase. This
is typically quantified by true anomaly: the angle of the current position measured from periapse.

Kepler’s third law was the relationship between period and semimajor axis: P 2 = a3. Note that this
only works if you use the right units: years for the former and AUs (astronomical units; the mean distance
between the sun and the earth. 1AU ≈ 149, 600, 000km).

4.2 The Three-Body Problem

The three-body equations are just like the two-body equations except half again as complicated9. In
behavior, they’re completely different; the latter only have conic-section solutions, whereas the former can
exhibit chaotic behavior.

Here’s a picture of the setup and notation:
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The equations are:

~̈r1 = −G

(

m2

~r1 − ~r2
|(~r1 − ~r2)|3

+m3

~r1 − ~r3
|(~r1 − ~r3)|3

)

(6)

918th-order instead of 12th-order
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~̈r2 = −G

(

m1

~r2 − ~r1
|(~r2 − ~r1)|3

+m3

~r2 − ~r3
|(~r2 − ~r3)|3

)

~̈r3 = −G

(

m1

~r3 − ~r1
|(~r3 − ~r1)|3

+m2

~r3 − ~r2
|(~r3 − ~r2)|3

)

PS13 covers writing out these equations and solving them numerically. The article by Hut and Bahcall[4]
(which in the 1999 course pack) shows some of the interesting behavior that can arise in three-body
interactions.
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