
Error in Numerical Methods
Notes for CSCI3656

Liz Bradley

(with help from Jay Kominek and Wayne Vinson)

Department of Computer Science
University of Colorado

Boulder, Colorado, USA 80309-0430
c©2002

Research Report on Curricula and Teaching CT004-02

1 Introduction

Error — that is, how far an answer is from the true value — can be measured in two
different ways: as an absolute value, or as a relative value. Absolute error is the difference
between the computed (or estimated) answer and the true answer. Relative error is the
absolute error divided by the true answer. Absolute error is measured in regular units:
degrees, inches, seconds. Relative error is measured in relative units: percent, parts per
million, decibels, etc.

For example, if the temperature outdoors is 75 degrees but your thermometer is reading
96 degrees because it’s in the sun, its absolute error is

|75 − 96| = 21

measured in degrees, and its relative error is

|75 − 96|

75
= 0.28

or 28%.

You can also express error in terms of significant figures, or digits of accuracy; π, for
example, is 3.141592654... If I round it to the fourth place after the decimal point, I get
3.1416. There is another way to approximate a number using fewer decimal places’ worth
of space: one can “chop” it (which means simply discarding the digits after the one you
want). π chopped to the fourth decimal place, for instance, is 3.1415. Note that chopping
error can be worse than rounding error!

Error comes from a variety of sources:

• Blunders: Software Engineering: Theory and Practice (Pfleeger; Prentice-Hall, 2001)
cites various depressing statistics for bug frequencies: one bug per...

– 10,000 lines of code in the avionics system of the space shuttle

1

– 5,000 lines of code from “leading edge software companies”

– 700 lines of code in “critical systems”

– 20-200 lines of code in military systems

Note that these are in tested, deployed code. The stuff you write late on monday
nights is probably worse.

• Modeling assumptions: the real world is nonlinear and complicated, and any mathe-
matical description of it is almost guaranteed to be wrong. Engineers and scientists
not only realize this, but actually take advantage of it. In particular, the idea in
modeling is to construct a reasoned, controlled approximation that serves your pur-
poses with minimal complexity. In the first month of freshman physics, for instance,
you are taught that a ball dropped from a building accelerates constantly until it hits
the ground. In the second month, you are taught that air friction also matters if you
want to describe the ball’s trajectory more precisely. The idea is to use as simple a
model as you can get away with, where “get away with” means that the difference
between the model and the system is below the resolution that your application de-
mands. (It would be foolish, for instance, for me to include the effects of the coriolis
force induced by the earth’s rotation unless I was dropping the ball from a very tall
building1.) The upshot of all of this is that any model differs from the real system
that it describes. This difference may be intentional and useful, but it is still a source
of error, and you need to be aware of it.

• Sensors: real measurement devices always have finite resolution, are often noisy, and
sometimes inject time delays. The analog-to-digital converter in one of the standard
signal processing chips2 used to process the audio signals going to and coming from
standard consumer phone lines, for example, uses 10 bits (including a sign bit) to
capture the gradations in the volume of your voice, with a ±1.5 LSB error. This
means that they cannot resolve subtle sound differences — those that create a voltage
variation of less than 3 parts (that is, ± 1.5 LSB) in 29, which translates to ±0.586%
error. Sensors can also distort the quantities that they are supposed to measure.
The Hubble Space Telescope mirror, for instance, was installed with a critical washer
underneath it, instead of on top of it. This threw off the path of every photon that
bounced off the mirror, causing the image that arrived at the telescope’s lens to be
distorted — and in a complicated, nonlinear way that couldn’t simply be subtracted
off post facto. (Incidentally, this could have been caught with a half-million dollar
pre-launch test, but the mission was over budget, so they skipped it. Fixing it required
a space shuttle visit, which costs hundreds of millions of dollars. Moral: don’t skimp
— either time or money — on testing.)

• Truncation: comes from the approximation that is inherent in numerical algorithms.
Consider methods that are based on some kind of series. If you only use the first n
terms of the series, you have “truncated” the series (and the method). The effects

1You’d be surprised, though; this effect curls the ball a meter or so sideways for every 500m in height.
2The Texas Instruments TMS320

2

of those ignored terms are called truncation error. For instance, a three-term Taylor
series approximation to f(x) = ex near x = 0, which is p2(x) = 1+x+x2/2, involves
a trucation error of x3/6 + x4/24 +

• Computer Arithmetic: computers have finite-width words, so their precision is finite.
Floating-point numbers can only take on discrete values; working with computer
arithmetic is much like walking on a sidewalk and only stepping on the cracks. More-
over, computer arithmetic systems have bounds, and you risk over- and underflow if
you exceed them — e.g., if you evaluate 100! on your pocket calculator. Lastly, the
exact behavior of the error will depend on whether the computer rounds or chops
numbers to get them to fit into its finite-precision world.

These types of errors can combine. Imagine that you construct a model (that is, an
equation) that describes how a ball moves through the air, but you neglect air friction.
Then, you approximate that equation with a two-term Taylor series and evaluate it on a
calculator with five decimal places. In this case, you have trucation error (the higher-order
terms of the Taylor series that you didn’t include), modeling error (that neglected friction),
and finite-precision arithmetic error (all the digits past the fifth place, which the calculator
loses).

Error can also propagate. Numerical methods that feed their outputs back to their
inputs are particularly prone to this. The best example I’ve seen of this is a simulation of
the solar system by E. Hairer of the University of Geneva. He (she? don’t know the first
name) used a numerical algorithm to predict the position of each planet at the next time
step. This algorithm simply looked at the positions of the other planets, computed their
gravitational force on the planet it was simulating, and then used that force to figure out
where that planet would go next. That new position then became the jumping-off point
for the next step of the simulation, and so on. (We’ll do these kinds of algorithms in the
last month of the semester.) The issue here is that the algorithm’s answer is used as its
input on the next round of simulation. If that answer is wrong — if the planet is an inch
too far to the left — the algorithm will faithfully figure out where it will go from that

(wrong) position. As you can imagine, things can go rapidly bad from there, much as a
snowball accretes more snow as it rolls downhill, making it bigger, which makes it accrete
more snow, and so on.

This phenomenon is known variously as dynamic error, propagating error, multiplicative
error, etc. The amount of error that takes place in each individual step of such a process
is sometimes called local error; the accumulated results of those local errors over the whole
run is sometimes called global error. Global, propagating error is different from additive

error, such as the distortion introduced by a badly focused lens, which only comes in once,
and is not fed back around into the input of the method. Dynamic error is much nastier
because of this feedback loop. We will cover this in more detail later in this course.

Algorithm-induced error can come from other sources as well; these notes give only a
brief introduction. Any numerical approach involves some sort of mathematical approxi-
mation, and hence some error. Implementation matters, too: how you choose to set up the
termination condition on your algorithm will obviously affect the resulting error.

3

2 The Next-Term and Next-Step Heuristics

Calculating the error is all very well in theory, when you know the answer and can write
down how far off you are. In practice, of course, things aren’t so easy: you invoke some
numerical method, you get back an answer (or a series of answers), and you’d like to be
able to look at that information and draw some conclusions about how good your answer
is.

Numerical methods practitioners use a variety of techniques for this. The first one that
we’ll discuss is based, again, in the notion of a series. If your algorithm uses a series — and
many, many of them do — and you truncate that series at some point, then the terms that
you chopped off are a good estimate of the error. (cf., the discussion of truncation error,
above.) Furthermore, if that series is a nice, converging one, then each successive term in it
is smaller. Putting those two arguments together yields the next-term rule: that the error
in a numerical method that is based on a series is approximately equal to the first unused
term in the series. The reason this is useful is that you know (or can look up), for each
method, what kind of series it uses. That means you know what that next term is, and
can sensibly use it as an estimate of the error. (This is exactly the same idea, by the way,
as in the derivation of the R(n) in the Taylor series discussion.)

A related way to estimate error is to take advantage of how a numerical method con-
verges to an answer. If your iterates are settling down — that is, if the difference between
successive iterates is getting smaller — intuition suggests that you’re getting closer to the
answer. The next-step rule formalizes this: it estimates the error at step n as the difference
between the answer at step n and the answer at step n + 1. (Note that you have to do
one more step’s worth of work to calculate this.) To get the relative error in this case, you
divide the absolute error by the answer at step n. Some authors advocate dividing by the
answer at step n + 1 instead; either way is fine with me.

Of course, if the problem is pathological, the next term in the series could be bigger
than all previous ones, and the next step of the iteration could diverge from all the steps
that preceded it. The next-term/next-step rules are heuristics, not algorithms or theorems.

3 Computer Arithmetic Error

Floating-point error is common and dangerous enough to warrant a bit more discussion.
In real-world computers, these errors are small, but their effects are still important if the
numbers that you’re working with are small. Calculations can magnify these effects. Here
is a function that demonstrates these problems very nicely:

f(x) =
1 − cos x

x2

If you evaluate f(x) near x = 0, a bunch of bad things happen. First and foremost,
since x is small, the relative error introduced by the computer’s arithmetic system will

4

be large. Calculating 1/x worsens that effect: it’s like a magnifying glass for the error.
Squaring a small number that contains a large relative error also magnifies that error, and
inverting the quantity (1/x2) makes matters even worse. Lastly, cosx is close to 1 when
x = 0, so the numerator is also problematic, in that it involves a subtraction of two nearly
identical numbers. The upshot of all of this is that the error in the calculated answer f(x)
will get worse as x → 0. This becomes painfully obvious if you calculate the value of f(x)
near x = 0 using a calculator that has only 10 digits of accuracy:

x f(x): 10 digits f(x): true value

0.1 0.4995834700 0.4995834722
0.01 0.4999960000 0.4999995833
0.001 0.5000000000 0.4999999583
0.0001 0.5000000000 0.4999999996
0.000001 0.0000000000 0.5000000000

Sometimes you can rearrange a function like this and make it less sensitive to numerical
errors. The trick is to look for the places where the “small number effects” described above
might creep in, and see if you can write that part of the function in a way that gets around
it. (This is related to scaling, which we will talk about in a few weeks, in conjunction with
linear systems solvers.)

The traditional way to think about a computer arithmetic system’s precision is similar
to the notion of a calculator with a fixed number of decimal places. In particular, people
think about a property called machine ǫ: the smallest number (or difference between two
numbers) that the computer can perceive. If a computer used 32 bits to represent floating-
point numbers, for instance, and its range were -1000 to 1000, a simplistic arithmetic system
might divide up the interval [-1000, 1000] into 232 chunks, and represent a number using
the binary code identifying the chunk into which it falls. The quantization steps in this
system fall at even gaps of 2000/232 = 4.67 × 10−7.

This is not, however, the way computers really do arithmetic. As noted above, a given
size error has a stronger effect on calculations that involve smaller numbers. For this
reason, computer arithmetic systems try to be more precise about smaller numbers. This
means that they spread the representable numbers out in a nonuniform way — specifically,
the smaller the range, the more dense the numbers that can be represented. What this
means is that the notion of a fixed-size machine ǫ is oversimplified, and the quantization
introduced by floating-point arithmetic is not uniform. This is well intentioned and useful:
it happens because computer arithmetic systems are designed to minimize the error effects
described above. Nonetheless, arithmetic error is still a problem, and it still gets magnified
by calculations, and you still have to worry about it.

All of this is addressed further in Lloyd Fosdick’s IEEE Arithmetic Short Reference,
which we will cover next.

5

4 Conclusion and Reality Checks

Understanding where errors come from is not just an academic exercise. Rather, it allows
you to figure out if your computation is right. If you want to know whether the truncation
error is an issue, you can use one more term in the series and see of your answer changes.
If you’re worried about floating-point arithmetic effects, change from single to double-
precision numbers (e.g., from long to double in c or c++) and see if the answer changes. If
your algorithm dices up space or time and you want to know if the quantization is messing
things up, halve the spacing and re-run the code. If you don’t know whether or not friction
matters, include it and see if things change. And so on and so forth. If you don’t know
what kind of error you have and you want to find out, you can make each of those changes,
successively, and see which one(s) affect your answer.

6

