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Note: only undergraduates are required to turn in this problem set, but all
students should do the reading listed below.

Reading: Liz’s Classical Mechanics notes and pp428-429 of Strogatz (This is a short
section called “The Importance of Dissipation.” The page numbers may be different in
your edition. It’s right before section 12.2.).

Online assignment: Tuesday: unit 8.6 video. Thursday: unit 9.4 video. No quizzes
this week.
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Problems:

1. For this problem, you’ll need a bike wheel, knowledge of section 3 of the Classical
Mechanics Notes, and a little bit of artistic skill. Hold each end of the axle (or the
skewer, if you’re fastidious about grease on your hands) with one hand, straight out in
front of you, keeping your hands at the same level and your palms down, so the spokes
are vertical. Spin it so that the top is approaching you.

(a) Sketch yourself holding the wheel. Show ~ω and ~L on your sketch.

Now try to turn the wheel sideways, so your left hand is directly above your right hand.

(b) Which way does the wheel pull you as it tries to preserve the angular momentum ~L?
Does this make sense? Why?

2. (a) Write down the Lagrangian for a bead of mass m moving freely on a rotating
hoop, as shown below:

θ

x

z

y
φ

Assume that the hoop is a perfect circle of radius r, that it can rotate freely around the
vertical (z) axis passing through its center, and that the bead moves freely along this
circle. This system has two degrees of freedom, so you’ll need two coordinates. For this
problem, please use the angle θ between the bead and the vertical axis as one coordinate
and the angle φ between the hoop and the x axis as the other.

(b) Use the Lagrangian to derive (not “solve,” not “integrate,” just “derive”) the equa-
tions of motion.

(c) Given a Hamiltonian or Lagrangian, how do you identify cyclic coordinates?

(d) Are there any conserved quantities (“constants of the motion”) in this system? If so,
which one(s)?

3. Your task in the rest of this assignment is to learn how to set up the two-body problem
for a binary star system. Please refer to section 4 of the Classical Mechanics Notes for
information, equations, and derivations.
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If you were observing a binary star system from some space-fixed origin point, you would
need 12 pieces of information to describe the positions and velocities of both stars, and
you’d use the 12th-order two-body equations — equation (4) in the Notes — to simulate
their behavior.

If, on the other hand, you were sitting on one member of a binary star system, with
the other star orbiting around you1, the 12th-order two-body system — equation (4)
in the Notes — reduce to a 6th-order system (equation (5)). The missing six pieces of
information describe the position and velocity of the star that you’re sitting on.

Make sure you understand the derivation of the equations of motion in both frames, and
try to visualize the various ellipses involved. Each star is on an ellipse around the other
and around the center of mass. (The “around the center of mass” part of this is very
hard to visualize, partially because the center of mass moves.)

To fill in the various initial conditions in the various two-body equations, we will use
conservation of angular momentum and some simple properties of ellipses. Note: M is
the total mass m1 +m2, µ is the reduced mass m1m2

M
, and γ = GM .

Conservation of angular momentum tells you that the motion is planar: the two stars
continue to revolve around each other in the plane in which they start out. This takes
care of four of the twelve initial conditions (all of the “out-of-plane” position and velocity
components).

To make things simple, assume that the stars are of equal, normalized masses (m1 =
m2 = 0.5), and set both the semimajor axis a of the orbit and the gravitational constant
G to 1.0. These simplifications are not as wild as they might seem; they are drawn from
a classic Astrophysical Journal article by Hut and Bahcall.

(a) Sketch and dimension the elliptical orbit of one star around the other (pick either
one) for an eccentricity e of 0.7. You can try the string-and-two-thumbtack trick: make
a loop of string, thread it around two thumbtacks (pinning down the paper at the foci),
put a pencil inside it, stretch out as far as the string will let you, and draw a closed
curve, keeping the string loop taut.

Can you sketch the ellipse of your star’s orbit around the other — on the same plot?

(b) Repeat (a) for e = 0. This is what Hut and Bahcall used for the binary in the
complicated binary-field star exchange interaction that I have showed in class several
times.

(c) On your sketches from parts (a) and (b), show (i) the periapses and (ii) the positions
of the stars when the true anomalies in each orbit are π

4
.

4. The final task in setting up the two-body equations is to choose a coordinate system
and figure out the initial conditions in that frame of reference. Common choices are to
place the origin at the center of mass or on one of the masses involved; in addition to
this, one must specify whether the coordinate system is fixed in space or moves with

1That is, you’re at one of the foci of the ellipse that it’s following
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some associated point (one of the stars or the center of mass of the pair of stars). For
this problem, please use a space-fixed coordinate system and place its origin at the initial
position of one member of the binary. Remember that this set of axes will remain at the
same point in the same orientation while the star that was originally at the origin moves
away along its orbit.

Assume that the star at the origin is at rest, and that the binary orbits — with eccen-
tricity e = 0 — in the x− y plane, with the periapse of the second star on the positive
x-axis. Recall that the period and semimajor axis of an elliptical orbit are related via
Kepler’s third law: P 2 = 4π2a3

γ
. You are now equipped to figure out all of the initial

conditions for a RK4 run on either set of two-body equations.

(a) Compute the period of the orbit using Kepler’s third law.

(b) Draw a picture of the coordinate axes and show the positions of both stars at t = 0.

(c) Compute the velocity of the star that is not at the origin. Indicate its direction on
your drawing from part (b).

(d) Use these results to fill in the twelve components of ~r1, ~r2, ~̇r1, and ~̇r2 for the two-
body equation. (Hint: you’ve already done this, implicitly, in constructing the previous
drawing — all you have to do here is write down the components in the right places.)

(e) Compute the six components of ~r and ~̇r for the reduced two-body equation for this
binary system. Which star, in your drawing from part (b), did you choose as the origin?

Problem set 12 will cover writing the equations out and actually running this integration.
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