University of Colorado
Department of Computer Science

Chaotic Dynamics — CSCI 4446 /5446
Spring 2023

Problem Set &

Issued: 7 March 2023
Due: 14 March 2023

Graduate Students: project paragraphs are due in class on 16 March. I will send around a
doodle poll that day as well for the one-on-one project meetings (which are scheduled for the
week before spring break).

Reading: Please see the “Assigned reading for PS8-10” handout on the course webpage.

NOTE! you should make sure that you get access to TISEAN SOON so you have time to ask
for help if you run into any snags. See problem 4 below.

Online assignment: Tuesday: units 8.1-8.3 videos. Thursday: units 8.4-8.5 videos. Friday:
quizzes 8.1-8.5.

Bibliography:

e H. Abarbanel, Analysis of Observed Chaotic Data, Springer, 1995. Another good book
on time-series analysis, from embedding onwards.

e E. Bradley and H. Kantz, “Nonlinear Time-Series Analysis Revisited,” Chaos 25:097610
(2015). DOI: 10.1063/1.4917289.

e A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from
mutual information,” Physical Review A 33:1134-1140 (1986). The original paper on the
use of average mutual information in estimating 7.

e J. Garland and E. Bradley, “Prediction in Projection,” Chaos 25:123108 (2015) DOI:
10.1063/1.4936242.

e M. B. Kennel et al., “Determining minimum embedding dimension using a geometrical
construction,” Physical Review A, 45:3403-3411 (1992). The original paper on the use
of average mutual information in estimating m. (A synopsis of this algorithm appears on
page 17 of my notes on nonlinear time-series analysis, which you can find on the course
webpage. If you want the full paper, it’s in the “Coping...” collection.)

e N. Packard et al., “Geometry from a Time Series,” Physical Review Letters 45:712 (1980).

The first of the two original papers on embedding; also in the “Coping...” collection.

e T. Sauer et al., “Embedology,” Journal of Statistical Physics, 65:579-616 (1991). The
definitive paper about the broader field of embedding, but long & highly technical. Proves
m < 2deqp.

e T. Sauer, “Interspike interval embedding of chaotic signals,” Chaos, 5:127 (1995). An
embedding method that uses the intervals between discrete events, rather than evenly-
sampled measurements of the whole time line.

e F. Takens, “Detecting strange attractors in fluid turbulence,” in Dynamical Systems and
Turbulence (D. Rand and L.-S. Young, eds.), Springer, Berlin, 1981. The other original
paper on delay-coordinate reconstruction.

Problems:

In this problem set, you will explore some simple embedding algorithms, using position-versus-
time data gathered from the driven pendulum that I’ve showed you in videos. I have posted
three data sets on the class webpage; see the PS8 entry on that page for directions (and a
clickable link) to these data. In all three runs, the angle was measured every At seconds using
an optical encoder with a resolution of 0.4 degree. The drive amplitude was fixed; the drive
frequency (the bifurcation parameter) was different for each data set:

e in datal, the drive was turned off
e in data2, the drive is on, with a medium frequency

e in data3, the drive is on, with the same amplitude but a higher frequency

Size Issues: These data files contain up to 6MB of information. It would make sense
to debug your code on test files that consist of small chunks of these files.

Each file captures a single trajectory of the driven pendulum (except that data2 was so big
that I broke it down into four pieces: data2.first250sec, data2.second250sec, and so on).
Each line of each file represents a single time-sample of the pendulum’s angular position. Each
of these data points looks like this:

0 time

...where time is in seconds and 6 is mod 27. Depending on when I hit the reset button on the
data-acquisition system, 6 may contain an offset, so /=0 may not be “vertical.” Also, note
that the sampling rate was different; datal and data3 were sampled at At = 0.001 seconds
and data2 at At = 0.002 seconds.

The time base and thus the sampling interval in the data acquisition channel were not quite
uniform. Together with the finite precision of the angle sensor, this standard problem with
computer-mediated data acquisition has two important implications:

e Any ws that you reconstruct using divided differences from the 6 and time data may be
inaccurate. You’'ll explore this in problem 1.

e Nonuniform sampling violates the conditions of the Takens theorem, so any attractors
constructed via embeddings of these data are not true diffeomorphic copies of any at-
tractor that may exist in the system...but they’re pretty close. If we wanted, we could
mitigate the effects of that by using embedding intervals that are much larger than the
experimental sampling interval, or by interpolation, if we knew exactly how far off our

samping interval was; see the optional reading listed above for details. (There is no need
for you to do that in this assignment.)

1. Write a program that steps through a data file, constructs values for w using divided
differences—first-order forward is good enough, but you may use something smarter if you
want—and plots the results in state-space form, with # mod 2.

Note that if data are oversampled—that is, if the sampling rate is much faster than the device’s
dynamics, as is the case in the data that you’re working with here—you have to be a little
careful about the divided difference formulae. In particular, you're going to need to downsample
the data in order to get a sensible plot. The choice of downsampling rate is part of the thinking
needed for this problem.

If the sampling rate is slower than the dynamics, on the other hand, you’ve missed some of the
behavior. That’s a different and nastier problem that is not at issue here.

Apply this program to datal and turn in a plot. Since the drive is off, this plot should be a
clean spiral (why?). Please comment on what it really looks like, as well as on possible causes
for this.

2. Write a program that steps through a data file and embeds the 6 data, producing the corre-
sponding trajectory in delay-reconstruction space. This program should take a time interval 7,
a dimension m, and indices j, k of a pair of axes on which to plot the results. It should produce
a list of m-vectors (points in reconstruction space) each of whose i*" element is (¢ + it) for
i = 0..m — 1. Finally, for each m-vector, it should plot the j** element against the k" element,
both mod 2.

Aside: T is usually an integer multiple of the sampling interval At in the data set;
if it isn’t, interpolation may be called for. (This is not an issue in this problem set.)
In cases like this, people often sidestep the issue and just use the data point that is
closest to the sampling interval. Sometimes, they do a linear interpolation between
the points on opposite sides of the interval boundary. Note that 6(t)—the first
coordinate of the reconstruction-space point—should always be a real data point.
Again, see the optional reading listed above for details.

(a) Run your embedding program on the data2 set with 7 = 0.15sec and m = 7. Plot the
zeroth element of the reconstructed state vector—#(t)—on the vertical axis and the second
(0(t +0.3), here) on the horizontal axis (i.e., j = 0 and k = 2). What kind of attractor is this?
Turn in a copy of the plot.

(b) Now play with the data3 set: use m = 7 and start with 7 = 0.01sec, then raise 7 to 1.5,
checking at least three intermediate points along the way—e.g., 7 = 0.01, 0.15, 0.5, 1, 1.5sec.
What kind of attractor is this? Describe and explain the effects of the different 7s and turn in
one or two interesting plots—of 6(t) against 6(¢t+57) this time—that back up your explanations.

3. [Thought experiment]| (a) In all of the problems above, we used m = 7 whether or not
the drive was on. What requirements does the Takens theorem place on m for a successful
embedding of the driven pendulum? What about the undriven pendulum?

(b) What do you think would happen to the reconstructed trajectory—mnot just your picture,
but the full trajectory—in part (b) of problem 2 if you had used m = 2 or m = 257 (one or

two sentences only, please).

(¢c) What do you think would happen to the reconstructed trajectory in part (a) of problem 2
if you had used 7 = 10~ '—which would require much more frequent sampling, obviously; for
the purposes of this answer, assume that that was the case—or 7 = 105? (one or two sentences
only, please). What would your pictures look like?

You’ll need access to the TISEAN package to do the next two problems. It’s eas-
iest to just use it via the CSEL “tile” for this course, which you can find on
coding.csel.io, but you may want to download and install it separately on your
own machine using the links on the course webpage. See the PS9 entry on the
course homepage for more information.

4. The 7 parameter is critical to a successful embedding. The standard first step in the analysis
of a scalar time series from a nonlinear dynamical system is to choose a good value for that
parameter.

Use TISEAN’s mutual tool to construct a plot of mutual information versus 7 for data2.first250sec.
Note! In mutual’s output, 7 is actually reported in units of the sample interval (At), not sec-
onds. Start with the default values of the algorithm parameters—that is, just run:

mutual data2.first250sec -o outputfile

What you're looking for is the first minimum of this curve. Do you see one? (Hopefully not;
I didn’t when I ran that experiment.) That means that the default value that TISEAN uses
for the “max time delay” parameter of the mutual algorithm is not high enough for this data
set. Increase it until you see the first minimum. Mark that value on the plot and convert that
value into seconds. To do this calculation, you’ll need to look at the data file to determine the
sample time At. Also write down the mutual call that you used to produce the data in the
plot (mutual -o blah...)

5. The standard second step in nonlinear time-series analysis is to choose a good value for
the embedding dimension m. To do this, use TISEAN’s false nearest tool to construct a plot
of the percent of false-near neighbors versus m for data2.first250sec. Use an m range of
[1,10], plug in your value for 7 from problem 4 as the delay parameter, and leave the rest of the
parameters at their default values. Make a plot of the results. The first column in the file that
false nearest produces is the m and the second is the ratio of false neighbors that it found at
that m. The standard rule of thumb is to choose the m value where that ratio first gets below
0.1 (i.e., 10% false neighbors). Mark that m value on the plot, write down the value, and turn
in a copy. Also write down the false nearest call that you used to produce the data in the
plot.

