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Problem Set 9

Issued: 14 March 2023

Due: 21 March 2023

Graduate Students: one-on-one meetings about projects will take place during the
week of 20 March. I will send around a scheduling doodle this week; make sure you

sign up for a slot.

Reading: Liz’s notes on Wolf’s algorithm and the materials listed in the “Assigned
reading for PS8-10” handout on the course webpage.

Online assignment: Tuesday: unit 7.2 video. Thursday: unit 9.2 videos. Friday:
quizzes 7.2 and 9.2.
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periment,” Phys. Rev. Lett. 63:1-4 (1989). Gives a good algorithm for finding
unstable periodic orbits (UPOs).
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• J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,”
Rev. Mod. Phys 57:651 (1985) and J.-P. Eckmann et al., “Liapunov exponents
from time series,” Phys. Rev. A 34:4971 (1986). The first one proposed the
“reverse engineer the Jacobian” approach to λ calculation; the second applied it
to real data.

• U. Parlitz, “Identification of True and Spurious Lyapunov Exponents from Time
Series,” Int. J. Bif. Chaos 2:155 (1992).
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• P. So et al., “Detecting unstable periodic orbits in chaotic experimental data,”
Physical Review Letters 76:4705-4708 (1996).

• A. Wolf, “Quantifying chaos with Lyapunov exponents,” in Chaos, Princeton Uni-
versity Press, 1986. A reasonable review article.

Problems:

1. (a) Generate a trajectory from the Lorenz system with a = 16, r = 45, b = 4.
Use nonadaptive RK4 with a timestep of 0.001 from some starting point near the
attractor, and generate at least 15000 points.

(b) Generate a non-chaotic trajectory by lowering the r value to 20 or less and repeating
the run.

The next two problems will use these trajectories as “experimental” chaotic and non-
chaotic data sets. (There is no need to turn anything in for problem 1.)

2. Implement the Wolf algorithm for determining λ1 of an experimental data set and test
it on the trajectories from problem 1. The notes listed in the assigned reading include a
schematic that should help you think about the algorithm. Note that you do not have
to worry about embedding here, as the data are already in full state-space form. To run
the Wolf algorithm on a data set that only contained samples of one state variable, you’d
first have to embed that data, using your PS8 results and making intelligent choices for
m and τ . (CSCI 5446 students will do that in the next problem.)

Are your λ1 results on these two data sets consistent with what you know about Lyapunov
exponents and chaos? Why or why not?

3. [optional for those enrolled in CSCI 4446] Save out just the x coordinate of the data
set from problem 1(a) to a file (say, foo) and use tisean’s lyap k command to compute
λ1 from that scalar time series. On the CSEL machines, the command will look like this:

lyap k foo -m? -M?? -d??? -o outputfile

...where you want the calculation done for a range of values from ? to ?? of the
dimension m and ??? is the delay τ . That is, if I wanted lyap k to run with τ = 20 and
1 ≤ m ≤ 4, I would type lyap k foo -m1 -M4 -d20 -o outputfile. (If you are using
the Mac version of TISEAN, the command looks like this instead: lyap k foo -M1,4

-d20 -o outputfile.)

Use mutual on each data set, as you did in PS8, to pick τ . Use the Takens theorem
to pick m (this works here because we know the true dimension; in general, that’s not
the case). Please explain your choices for these two parameters, and also compare your
answer for λ1 to the value that you obtained for this trajectory in the previous problem,
using Wolf’s algorithm. Discuss any discrepancies.

[totally optional for everyone, but useful for those who are interesting in actu-
ally using these techniques] Play with at least one of the other parameters of
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the lyap k algorithm: the Theiler window -t, the epsilon size -r (and, if you
wish, the number of iterations -s). Describe and explain their effects upon
the results. These explanations are going to require some digging around on
the tisean website and corroboration against the class readings and your
lecture notes. Please comment on which of the results you trust more and
explain why. What were the “lessons learned” from your experience with this
part of this problem?

4. Given the system derivative, the variational equation (PS7), and a linear algebra
package that computes eigenvalues2, calculating Lyapunov exponents is very easy:

λi := limt→∞

1

t
ln |mi(t)|

where mi(t) are the eigenvalues of the matrix {δij} that you integrated in PS7. Of course,
you can’t let t go to ∞ in practice; even letting it get very big can cause numerical
issues, as we’ve discussed in class (viz., long, skinny variations, which will make {δij} be
ill conditioned). But you don’t want it too small, either, or you won’t be capturing the
asymptotic behavior of the system—which is what Lyapunov exponents are about. In
part (a) below, I suggest a value for t; in general, though, one has to do some thoughtful
experimentation to find a good time period over which to do the calculation here. (Part
(b) of this question asks the CSCI 5446 people to do a bit of thinking about that.)

(a) Calculate the λis for the Lorenz system, using the same initial conditions and pa-
rameter values that you used in problem 1(a) above. Approximate the “t → ∞” step in
the equation above by using a 10000-point integration run. Comment on your results:
whether or not they match the values from Problem 3, whether or not they should match
those values, which ones you should trust more and why, etc.

(b) [optional for those enrolled in CSCI 4446] Repeat the calculation for longer and
shorter variational equation integration runs and comment on the results. (Hint #1: do
the λs change? Should they, theoretically? Hint #2: watch out for ill-conditioned
matrices here...) Next, try moving the initial condition to a different point on the
attractor and seeing what that does to your results.

Please include a sentence in your writeup about those experiments: your choices and
your reasoning about them.

2Eigenvalues and eigenvals in Mathematica and Maple, respectively.
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