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1 Introduction

One way to deal with a nasty, analytically intractable function like tan(log
π
x37.3) is to

approximate it with a benign one. There are lots of ways to do this, almost all of which1

define “benign” as “polynomial.” The reason for this is that polynomials are easy to work
with: to write down, to take derivatives, to make more or less complex, etc. In general,
polynomials look like this:

Pn(x) = a0 + a1x + a2x
2 + . . . + an+1x

n =
n+1∑

i=0

aix
i

where n is the “degree” of the polynomial: that is, the highest power of x that appears in it.
(Polynomials can be in other variables besides x, of course, or even in multiple variables.)

At the top of the following page is a simple pictorial example of how one could use two
simple polynomials — a line and a parabola — to approximate another, more-complicated
function f(x) in the region near a specific point a. Note that both of these fitting functions
are close to f(x) near the point a, that the quality of their fit to f(x) degrades as one
moves away from a, and that the higher-degree polynomial (the parabola) appears to do a

1One notable exception is Fourier decomposition, which uses combinations of sinusoids to approximate

functions that are periodic in time.
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better job across a wider range.

xa

f(x)

A Taylor series is a specific mathematical recipe for constructing a polynomial Pn(x)
of degree n that approximates a given function f(x) near a point a. Here is the formula:

Pn(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) +

(x − a)3

3!
f ′′′(a) + . . . +

(x − a)n

n!
f (n)(a)

where f ′(x), f ′′(x) . . . f (n)(x) are the first, second, ... nth derivatives of the function f(x)
with respect to x. This formula is on the CSCI 3656 formula sheet.

As an example, consider f(x) = ex. We could fit a line to this function near some point
x = a by building a degree-one Taylor series like so:

P1(x) = f(a) + (x − a)f ′(a) = ea + (x − a)ea

(This makes use of the fact that the derivative of ekx with respect to x is kekx.) If we
wanted the line that fits ex near a = 0, then, we’d simply plug in that value:

P1(x) = e0 + (x − 0)e0 = 1 + x

(Please draw a rough plot of ex and 1+x so this makes sense to you.) If we wanted to fit a
line to a different region of ex instead — say, near a = 1 — we’d simply plug that a-value
in:

P1(x) = e1 + (x − 1)e1 = 2.718 + 2.718(x − 1) = 2.718x

(Again, please draw a picture of this for yourself.) If we wanted to fit a parabola to ex near
a = 0, we’d have to use one more term in the Taylor series:

P2(x) = e0 + (x − 0)e0 +
(x − 0)2

2!
e0 = 1 + x +

x2

2
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2 Why Bother

There are several reasons why you need to understand Taylor series and know how to build
them:

• Because many, many numerical computation methods are based on these kinds of
series.

• If you have a table of values of a function (e.g., ex for x = 0.1, 0.2, . . . , 0.9), you can
use Taylor series to calculate its value at some in-between point (e.g., e0.21).

• If working with a function would unnecessarily complicate your life and you can get
away with something simpler, a Taylor series is often a good thing to try. In many
graphics applications, for instance, the true effects of light falling on a complicated
surface are both horrendously expensive to compute and effectively invisible to the
human eye, so practitioners approximate those surfaces with simple curves instead.

• The notion of a series whose “goodness” increases with successive terms will help you
understand error in numerical methods.

3 Taylor Series and Error

A Taylor-series approximation, in general, is good near the point where you built it. If I
use P2(x) = 1 + x + x2/2 to obtain an estimate for e0, for instance, my answer is perfect.
(Thought question: is this always true?) As I move away from 0, the approximation gets
worse:

e0 = 1 P2(0) = 1
e0.1 = 1.1052 P2(0.1) = 1.1050
e0.5 = 1.6487 P2(0.5) = 1.6250
e2 = 7.389 P2(2) = 5
e5 = 148.4 P2(5) = 18.5

The inherent error in a Taylor-series approximation is also related to the match between
the complexity of the approximation and the complexity of the underlying function. If f(x)
is a line and you fit a degree-one Taylor polynomial P1(x) to it, your answer will be exact
— and not only at the point where you built the polynomial, but everywhere. If f(x) is
a parabola, you’ll need a degree-two Taylor polynomial for a perfect global fit. (If f(x)
is a line and you try to fit a degree-two Taylor polynomial to it, what do you think will
happen? Please try this and see.) In general, you need the degree n of Pn(x) to be at least
as large as the “degree” of f(x) in order to get a perfect global fit, and the error in your
results will depend on how much smaller n is than the “degree” of f(x).
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The quotes above are important; the word “degree” only makes sense for polynomials,
and if f(x) were a polynomial, we wouldn’t be bothering with Taylor series at all. Nonethe-
less, the generalized notion of the degree of a function as a way to assess (and compare)
complexity is useful in developing intuition about how all of this works. We’ll talk more
about this later and make the associated ideas more clear.

Here is a formula that encodes all of those concepts. The error in an nth degree Taylor-
series polynomial approximation to a function f(x) is

Rn(x) = f(x) − Pn(x) ≈
(x − a)n+1

(n + 1)!
f (n+1)(cx)

This formula is also on the CSCI 3656 formula sheet. With the exception of the cx term
— which is confusing and to which we’ll come back to below — this is pretty easy to pick
apart and understand. The first piece of that formula ((x − a)n+1/(n + 1)!) captures the
“the fit is perfect close to a and degrades as you move away from a” idea. The second piece
— the n+1st derivative of f — captures the “the degree of Pn(x) has to be at least as large
as the “degree” of f(x)” argument. (Thought experiment: what is the n + 1st derivative of
a degree-n polynomial?) And the whole thing looks suspiciously like the next term you’d
have added to the series to get Pn+1(x). This is a common heuristic in numerical methods:
you can estimate the error in your results using the next term that you would have added to
make things better. This is treated in more depth in the CSCI 3656 Error Notes (Research
Report on Curricula and Teaching CU-CS-CT004-02).

Consider the task of fitting this function with a Taylor series:

a

f(x)

x

If I wrote down a degree-two Taylor-series approximation to this function near the point
a, the resulting P2(x) would be a good fit to f(x) in some regions and a bad fit in others
— specifically, in the wavy region near the right identified with the dashed line. Moreover,
error estimates must always be pessimistic, so any calculations of the error in my P2(x)
must be done using the worst possible conditions. That means that the Rn(x) equation
should be evaluated at the worst possible point – that is, the x that makes it largest.

The cx term in the Rn(x) formula captures these ideas. It is a “worst case” factor — a
placeholder that means “find the x that makes this worst and plug it in.” For example, the
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Taylor-series fits to ex near x = 0 that are given on the previous pages have the following
error:

Rn(x) =
(x − 0)n+1

(n + 1)!
ecx

These fits were constructed at a = 0, but they are used at some other x, so in order to
evaluate the error that they may contain, we need to find the “worst-case” value in the
interval [0, x]. In this case, the Rn(x) function is monotonic upwards across this interval
and the answer is relatively easy: the error is biggest at the right-hand end of the interval,
so cx = x and

Rn(x) =
(x − 0)n+1

(n + 1)!
ex

In general, it’s not always easy to look at an Rn(x) function and see what x makes it
biggest; a good general strategy is to evaluate it at the endpoints of the interval, check
(using derivatives) to see if there’s a maximum inside the interval and, if so, evaluate the
Rn(x) function there too, then take the largest value of the whole lot.

Of course, all of this is somewhat of an academic exercise, since these calculations
presuppose that we know a fair bit about our answer. Nonetheless, this formula does have
some practical utility. For instance, if we want to know how many terms to put into the
Taylor series to obtain a particular level of accuracy, the Rn(x) formula can help. If I
wanted to build a Taylor series for ex around x = 0 that was accurate to two decimal
places out to x = 1, for instance, I would have to use enough terms for this to be true:

Rn(1) =
2.718

(n + 1)!
≤ 0.01

which translates, in this case, to n ≥ 5.

All of the material in this section is covered in much more detail in any calculus text.
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