
Seismic Event Detection from Volcanic Regions using
Feature Extraction and Deep Learning

Tavishi Priyam1, Elizabeth Bradley1,2, Anne Sheehan3, Rey Koki1

1. Department of Computer Science, University of Colorado Boulder 2. Department of Computer Science, Santa Fe Institute
3. CIRES and Department of Geological Sciences, University of Colorado Boulder

ABSTRACT
Volcanic eruptions are usually accompanied by
seismic events with a variety of temporal signatures:
volcano-tectonic earthquakes, low-frequency
earthquakes, tremors, and explosions. The detection
of these events in seismograph data has been done
manually for several decades now. This process
produces accurate results but is time and
labor-intensive. A variety of machine-learning
methods have been developed over the past decade
to automate elements of this task. Few of these
methods incorporate expert knowledge about the
process; rather, they train a model with a large
labeled data set and then simply work with the raw
seismograph data. Our goal is to build and train a
model that combines supervised machine learning
and expert knowledge to aid in this process. The main
technical challenge here is feature engineering:
identification of task-specific, salient, higher-level
attributes that can be extracted from the raw data and
used as inputs to the model. A well-chosen feature
set can greatly improve both training and deployment.
Through this research, we describe a neural network
that identifies the arrival times of the P and S waves
of small earthquakes preceding the 2012 New
Zealand Mount Tongariro/Te Maari craters eruption.
We utilize seismic waveform and analyst-reviewed
phase arrival data, which are available through
GeoNet New Zealand. The initial implementation
involves training a neural network that contains
convolutional and fully connected layers on the raw
waveform data. The subsequent implementation
involves training a similar neural network model,
without the convolutional layers, using a set of
engineered features. We compare the performance of
both models to determine the efficiency and
effectiveness of using a feature set as opposed to
using raw waveform data.

KEYWORDS

Seismic Event Detection, Seismic Phase Picking,
Machine Learning, Deep Learning, Feature
Extraction

1 Introduction

Artificial neural networks have been successful in
automating a multitude of tasks over the past
decade. This automation reduces manual labor
and standardizes processes. One such task is
picking arrival times of P and S waves from
seismograph data. This task requires analysts to
study the seismographs in order to be able to
detect the event as well as the picks. Due to the
tedious nature of the task, attempts have been
made at automating this process through the
application of machine learning and artificial
neural networks. These attempts have shown
great success in achieving the desired goal.
However, as any other automation process, such
models have their limitations.

Artificial neural networks require a great amount
of computation resources and time in order to
train and learn patterns from data. In addition to



this, most neural network models work like a
black-box with little to no understanding of how
they are performing a certain task. This makes
identification and correction of errors harder and
sometimes even impossible. Through our
research, we aim to integrate scientifically
meaningful feature engineering with the artificial
neural networks. We hypothesize improved
understanding and performance through our
methods.

2 Related Work

A great amount of research has been done in
this field and a greater amount is still ongoing. To
understand and approach the process of
combining phase picking with a computational
deep learning model, we conducted a literature
review of numerous research articles that
describe integrative models between the world of
computer science and geology.

Ross et al. [1] propose a convolutional neural
network approach to detect earthquakes without
sacrificing detection sensitivity. They compare
the task of recognising seismic phases in a
waveform time series to that of recognising
objects in two-dimensional images since both
objects can be represented using pixels in a
two-dimensional space. They apply the recent
advances in computer vision to seismological
applications and report noteworthy results.

Mousavi et al. [2] propose a global deep learning
model for simultaneous earthquake identification

and phase picking to ease the process of
handling and preprocessing noisy data.
Proposed model involves a combination of layers
of multiple convolutional neural networks (CNN)
and bidirectional long short-term memory neural
networks (bi-LSTM). Following these layers is an
amalgam of transformers that work with attention
weights which help define the importance of
each input to be considered for predicting the
output. The model performs well due to factors
such as specifics of the training set, architecture
of the training model, attention weight
mechanism, depth of the network and the
augmentations used during the training process.

Zhu et al. propose an arrival-time picking model
called Phasenet [3]. This is a deep-learning
model that can identify the arrival times of both P
and S waves from seismic data. They utilize the
architecture of U-net (deep neual network used
to process biomedical images) and modify the
architecture such that it can process one
dimensional time-series waveforms. They use
downsampling and upsampling throughout the
process of training such that the neurons can
focus on the most important features of the input
and expand learning on those features. This
model exhibits great performance and is able to
pick 94 percent of P-waves and 85 percent of
S-waves within 0.1 seconds of the analyst pick
times.

Yoon et al. [4] propose a Fingerprint and
Similarity Thresholding (FAST) model which
focuses on performing an efficient similarity
search and using it to detect the occurrence of



seismic events. The model works by converting
the time series seismic waveform data to
fingerprints (similar to audio fingerprinting. Eg-
Shazam). The FAST algorithm builds on the
waveprint audio fingerprinting algorithm by
combining different computer vision and large
scale data processing techniques to match
similar waveforms. In their research, the authors
observed that FAST can detect several
uncataloged earthquakes in one week of
continuous time series data. Along with the
advantages, the proposed algorithm has some
limitations. It trades off higher memory and
storage requirements for quicker runtime and
reduced complexity. It needs a significant amount
of memory in order to be able to successfully
detect previously undetected earthquakes.

Figure 1: Training Earthquakes

3 Data

In order to train a neural network, a great amount
of labeled data is required. The area of focus for
this research is the Southern Taupo Volcanic
Zone, New Zealand. Due to the volcanic nature
of the target region, there has been a lot of
seismic activity observed over the past decade
which suits our training needs. Figure 1 shows
the target area and earthquakes used for
training.

3.1 Data Extraction

Seismic data from the specified region is
provided opensource by GeoNet. We extract one
year of seismic data, collected using a
short-period seismometer with three component
sensor aligned to North from our region of
interest. The data extraction process is carried
out using ObsPy [5]. ObsPy is an open-source
framework that allows extraction and processing
of seismic data using simple functions that can
be used seamlessly in Python using the ObsPy
library. The extracted data is divided into
training and testing sets in a 70:30 ratio.

This data is segmented into short time windows
of 30 seconds. For the purpose of training, we
filter out the time windows without any seismic
activity and windows containing only P-wave
arrivals. The resultant is a dataset containing
windows that have both P and S wave arrivals.
An example is described in Figure 2. We create
tensors using this data by stacking the
waveforms from three different sensor channels:
EHE, EHN, EHZ. The labels are created by



creating tensors of the same length that have
zeros representing all the timesteps and ones
representing the arrival time of the P and S
waves.

Figure 2: 30 second waveform window

3.2 Data Pre-processing

The extracted data is pre-processed to ensure
uniform learning of the artificial neural network.
We apply the detrend function, provided by
Obspy, on the waveforms in order to remove the
mean from every signal. We also apply a taper of
five percent to the ends of each time window
using the taper function provided by Obspy.

In order to scale down the amplitude to a uniform
scale, we use the normalize function provided by
ObsPy. The resultant waveforms are saved in a
numpy array format and used for the training
purpose. Figure 3 describes a waveform before
and after the pre-processing steps have been
applied.

3.3 Feature Engineering

In order to incorporate scientific knowledge into
the training process, we engineered features
using the original signals. Seismic events such
as earthquakes possess characteristic temporal
signatures. Our aim is to capture these temporal
signatures and use them to help the model learn.
Templates have been used in the past to perform
this task [8]. For our study, we make use of
Wavelets to operationalize the proposed
methods since they have proven to work well for
seismic data analysis [9].

A wavelet is an oscillating signal that mimics the
action of a wave. Wavelets are localized in time
and can be manipulated using their scale and
location. A greater scale refers to stretched out
shape of the wavelet whereas a smaller scale
would result in a compact wavelet. The location
of the wavelet helps in shifting left or right on any
signal.

Wavelet transform helps in capturing temporal as
well as frequency information from a signal.
There exist two main types of wavelet transform:
discrete and continuous. The main difference
between the two exists in their scale. Discrete
wavelet transform, used in this study, convolves
the original signal over a mother wavelet on a
defined set of scales and locations whereas the
continuous wavelet transform convolves a signal
over an infinite number of scales and locations.
This results in much higher computation time for
the continuous wavelet transform.



Figure 3: Results of pre-processing

The python package pywt [10] offers a great
selection of mother wavelets than can be used to
transform a signal. We use the discrete
Debauchies 9 wavelet for our engineered

features. An example of a transformed signal is
described in Figure 4.

Figure 4: Wavelet Transform

4 Proposed Model

We propose two different model architectures
that can capture seismic activity from waveform
data. The first architecture focuses on using
pre-processed signals as input and leverages the
feature maps created by convolutional layers in a
neural network to get the desired result. The
model is a deep neural network comprising
several convolutional, pooling and



fully-connected layers. The architecture is
described in Figure 5.

Figure 5: Signal input model architecture

The second model aims at using characteristic
temporal signatures of seismic waves through
engineering features using these signatures in
the form of wavelets. The wavelets are passed
through a deep neural network as input and the
output probabilities describe the P and S-wave
picks. This network contains a lesser number of
convolutional layers and hence reduces runtime
and complexity while producing the desired
results. The architecture is described in Figure 6.

Figure 6: Wavelet input model architecture

4.1 Convolutional Neural Network

Convolutional Neural Networks are a type of
artificial neural networks that have been majorly
been applied to visual/image data. These
networks mimic the patterns of biological neural

networks present in the human brain in order to
train a machine to be able to predict and analyse
patterns in data like humans.

The key performance development exhibited by
such networks comes from the convolutional
layers. These layers are the building blocks of
these networks. They contain a set of filters or
kernels that are modified throughout the training
process. These filters are applied on the training
data through multiple iterations and convolve the
training input into feature maps. The feature
maps are used by the sequential fully-connected
layers to produce the desired output.

Fully connected layers refer to a subset of the
deep neural network where every neuron from
one layer is connected to every neuron in the
next layer. They work by performing a linear
transformation on the input to each layer. This
transformation involves multiplication with
weights and the addition of a bias term. The
weights and bias are learnt throughout multiple
iterations of training the network. The last
fully-connected layer usually contains the size of
the desired output and helps compile all the data
learnt throughout the training process.

For the purpose of training, we have created a
deep neural network comprising three
convolutional layers followed by a pooling layer
and 3 fully-connected layers. Using a pooling
layer helps reduce the dimensionality of feature
maps and reduces the overall complexity of the
network. The model used to train the wavelets



contains lesser number of convolutional layers
with the same network architecture.

The neural network is compiled using a focal loss
function. Focal loss proves to be extremely
helpful in dealing with class imbalance. It applies
a modulating term to a basic cross-entropy loss
which focuses the model learning on the hard
and misclassified examples in the training set
[13]. We also make use of the adam optimizer
which applies an optimized gradient descent to
the training process. We design the training
architecture using PyTorch [14].

5 Performance Evaluation

The proposed models’ performance is tested on
previously unseen earthquakes from the test set.
We observe that both models are able to pick a
majority of seismic phase arrivals within 0.5
seconds of the analyst pick times. It is seemingly
clear from the model performance that P waves
are easier to capture in comparison to S waves.

P waves
within 0.5s

S waves
within 0.5s

Signal Input 0.87 0.79

Wavelet Input 0.92 0.83

Table 1: Model Performance

Figure 7: Pre-processed signal model
performance

Figure 8: Wavelet input model performance

Despite exhibiting comparable performance, we
observe a minor improvement in the
performance exhibited by the model with feature
engineered inputs. This combined with the lesser
complexity, runtime and integration of scientific
knowledge make it the better choice among both
proposed models. A comparison of the
performance of both models is demonstrated in
Table 1.

The performance of these models is not up to the
state of the art pickers such as PhaseNet and



EQTransformer. Additional training data,
pre-processing and computational layers can
help improve the performance.

5 Future Work

There is great amount of work that can
potentially improve our current hypothesis. One
area to be explored is the feature engineering.
Addition of a varying set of features involving
basic statistical features such as mean, standard
deviation and interquartile range as well as
advanced features that have proven to work well
on seismic data such as covariance matrix [15],
Shannon entropy and coherency function may
help improve the models performance.

We plan to expand the current model and
incorporate the classification of various kinds of
seismic events such as tremor and
low-frequency earthquakes.

7 Conclusion

Through this research, we have established that
seismic phase picking can be automated through
the application of artificial intelligence and the
use of scientifically meaningful engineered
features helps improve the performance. The
current application has a lot of limitations and
would need to be improved in order to be
deployed at a larger scale.

REFERENCES
1. Zachary E. Ross, Men‐Andrin Meier, Egill Hauksson,

Thomas H. Heaton; Generalized Seismic Phase

Detection with Deep Learning. Bulletin of the

Seismological Society of America 2018;; 108 (5A):

2894–2901. doi: https://doi.org/10.1785/0120180080

2. Mousavi, S.M., Ellsworth, W.L., Zhu, W. et al.
Earthquake transformer—an attentive deep-learning
model for simultaneous earthquake detection and
phase picking. Nat Commun 11, 3952 (2020).
https://doi.org/10.1038/s41467-020-17591-w

3. Weiqiang Zhu, Gregory C Beroza, PhaseNet: a
deep-neural-network-based seismic arrival-time
picking method, Geophysical Journal International,
Volume 216, Issue 1, January 2019, Pages 261–273,
https://doi.org/10.1093/gji/ggy423

4. Yoon, Clara & O'Reilly, Ossian & Bergen, Karianne &
Beroza, Gregory. (2015). Earthquake detection
through computationally efficient similarity search.
Science Advances. 1. e1501057-e1501057.
10.1126/sciadv.1501057.

5. M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y.
Behr and J. Wassermann (2010) ObsPy: A Python
Toolbox for Seismology SRL, 81(3), 530-533, DOI:
10.1785/gssrl.81.3.530

6. T. Megies, M. Beyreuther, R. Barsch, L. Krischer, J.
Wassermann (2011) ObsPy – What can it do for data
centers and observatories?, Annals Of Geophysics,
54(1), 47-58, DOI: 10.4401/ag-4838

7. L. Krischer, T. Megies, R. Barsch, M. Beyreuther, T.
Lecocq, C. Caudron, J. Wassermann (2015) ObsPy: a
bridge for seismology into the scientific Python
ecosystem, Computational Science & Discovery, 8(1),
014003, DOI: 10.1088/1749-4699/8/1/014003

8. Mu, Dawei & Lee, En-Jui & Chen, Po. (2017). Rapid
earthquake detection through GPU-Based template
matching. Computers & Geosciences. 109.
10.1016/j.cageo.2017.09.009.

https://doi.org/10.1785/0120180080
https://doi.org/10.1038/s41467-020-17591-w
https://doi.org/10.1093/gji/ggy423


9. Adhikari, B., Dahal, S., Karki, M. et al. Application of
wavelet for seismic wave analysis in Kathmandu
Valley after the 2015 Gorkha earthquake, Nepal.
Geoenviron Disasters 7, 2 (2020).
https://doi.org/10.1186/s40677-019-0134-8

10. Gregory R. Lee, Ralf Gommers, Filip Wasilewski,
Kai Wohlfahrt, Aaron O’Leary (2019). PyWavelets: A
Python package for wavelet analysis. Journal of Open
Source Software, 4(36), 1237,
https://doi.org/10.21105/joss.01237.

11. Illsley-Kemp, F., Barker, S. J., Wilson, C. J. N.,
Chamberlain, C. J., Hreinsdóttir, S., Ellis, S., et al.
(2021). Volcanic unrest at Taupō volcano in 2019:
Causes, mechanisms and implications. Geochemistry,
Geophysics, Geosystems, 22, e2021GC009803.
https://doi.org/10.1029/2021GC009803

12. Harish Sangireddy, Colin P. Stark, Anna Kladzyk,
Paola Passalacqua, GeoNet: An open source software
for the automatic and objective extraction of channel
heads, channel network, and channel morphology
from high resolution topography data, Environmental
Modelling & Software, Volume 83, 2016, Pages 58-73,
ISSN1364-8152,
https://doi.org/10.1016/j.envsoft.2016.04.026.

13. T. Lin, P. Goyal, R. Girshick, K. He and P. Dollar,
"Focal Loss for Dense Object Detection" in IEEE
Transactions on Pattern Analysis & Machine
Intelligence, vol. 42, no. 02, pp. 318-327, 2020. doi:
10.1109/TPAMI.2018.2858826

14. Paszke, A. et al., 2019. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems
32. Curran Associates, Inc., pp. 8024–8035. Available
at:
http://papers.neurips.cc/paper/9015-pytorch-an-impe
rative-style-high-performance-deep-learning-library.pdf

15. Shi, P., Seydoux, L., & Poli, P. (2021). Unsupervised
learning of seismic wavefield features: clustering
continuous array seismic data during the 2009

L'Aquila earthquake. Journal of Geophysical Research:
Solid Earth, 126, e2020JB020506.
https://doi.org/10.1029/2020JB020506.

16.
https://ataspinar.com/2018/12/21/a-guide-for-using-t
he-wavelet-transform-in-machine-learning/

https://towardsdatascience.com/multiple-time-series-
classification-by-using-continuous-wavelet-transform
ation-d29df97c0442

https://medium.com/visionwizard/understanding-foc
al-loss-a-quick-read-b914422913e7

https://pytorch.org/docs/stable/optim.html

https://www.deeplearningwizard.com/deep_learning/
practical_pytorch/pytorch_convolutional_neuralnetwor
k/

https://doi.org/10.1186/s40677-019-0134-8
https://doi.org/10.21105/joss.01237
https://doi.org/10.1029/2021GC009803
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/
https://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/
https://towardsdatascience.com/multiple-time-series-classification-by-using-continuous-wavelet-transformation-d29df97c0442
https://towardsdatascience.com/multiple-time-series-classification-by-using-continuous-wavelet-transformation-d29df97c0442
https://towardsdatascience.com/multiple-time-series-classification-by-using-continuous-wavelet-transformation-d29df97c0442
https://medium.com/visionwizard/understanding-focal-loss-a-quick-read-b914422913e7
https://medium.com/visionwizard/understanding-focal-loss-a-quick-read-b914422913e7
https://pytorch.org/docs/stable/optim.html
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork/
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork/
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork/

