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In this paper, we study dynamic stability during running, focusing on the effects of speed, and

the use of a leg prosthesis. We compute and compare the maximal Lyapunov exponents of

kinematic time-series data from subjects with and without unilateral transtibial amputations

running at a wide range of speeds. We find that the dynamics of the affected leg with the

running-specific prosthesis are less stable than the dynamics of the unaffected leg and also

less stable than the biological legs of the non-amputee runners. Surprisingly, we find that the

center-of-mass dynamics of runners with two intact biological legs are slightly less stable than

those of runners with amputations. Our results suggest that while leg asymmetries may be

associated with instability, runners may compensate for this effect by increased control of their

center-of-mass dynamics. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4837095]

In order to understand the combined effects of speed, sta-

bility, and the use of leg prostheses, it is important to

explore the dynamical details of running. Nonlinear time-

series analysis of kinematic gait data can elucidate these

details. There have been a number of experimental studies

of the dynamics of running. To our knowledge, however,

no one has explored the dynamic stability of runners with

leg amputations, a population to whom dynamical stability

seems an especially important issue. Using nonlinear time-

series analysis on motion-capture data from treadmill

studies, we analyzed the gait dynamics of runners with

and without a unilateral transtibial amputation, from a

slow run up to each individual’s top speed. We used stand-

ard delay-coordinate embedding techniques to reconstruct

the dynamics from scalar time-series traces of the posi-

tions of various anatomical markers (e.g., the height of the

sacrum or the sagittal-plane angle of the right knee), then

we calculated the maximal Lyapunov exponent k1 of each

resulting trajectory. We found that stability decreased at

faster speeds for all runners, with or without amputa-

tions—although not monotonically and with one excep-

tion: the vertical dynamics of the center of mass (COM) in

runners with amputations. We also found that the lower-

limb dynamics were less stable (viz., higher k1) for the

affected leg of runners with an amputation than for their

unaffected leg—and less stable than either leg of the non-

amputee runners. All lower-limb k1 values increased with

running speed, but the inter-leg and inter-group relation-

ships remained largely the same. Surprisingly, the results

showed that the center-of-mass dynamics of non-amputee

runners were generally less stable than for runners with

an amputation. This suggests that asymmetries may be

lead to instability in the leg dynamics that is compensated

for by increased control of the center of mass.

I. INTRODUCTION

Analysis of locomotion dynamics elucidates temporal

variations in gait patterns and also has the potential to lead to

a better understanding of stability. Nonlinear time-series

analysis techniques have been used to study various aspects

of human walking, including differences between normal

and pathological walking gait (e.g., Refs. 9 and 18), the

effects of age and illness,6,29 synchronization when two

people walk side-by-side,28 recognition of an individual

from his or her gait,13 and stability of walking in the face of

continuous perturbations.25 The goal of our study was to

explore the effects of speed, stability, and leg prosthesis use

in the dynamics of running. At moderate speeds, a runner

can be modelled as a bouncing spring-mass system, whereas

walking can be represented as a series of inverted-pendulum

arcs. A number of interesting models of the dynamics of run-

ning have been developed in the biomechanics, robotics, and

nonlinear dynamics communities (e.g., Ref. 19), some of

which were specifically constructed to explore stability

issues.7 Only a few studies involved nonlinear analysis of

laboratory data from human runners (e.g., Refs. 20 and 26)

and few of these explored the temporal details of the dynam-

ics. Further, the effects of prosthesis use on these dynamics

have not, to our knowledge, been studied at all. (A recent

paper34 addresses the effects of prosthesis use on walking,

but walking and running have distinctly different dynamics,

and running-specific prostheses are mechanically different

than walking prostheses.)

To explore these dynamics, we collected data from 17

subjects running on an instrumented treadmill across a wide

range of speeds (3-9 m/s). Six of these subjects had a unilat-

eral transtibial amputation and eleven had two intact biologi-

cal legs. The time-series data included the xyz positions of
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reflective markers placed on the body, gathered via motion-

capture cameras over a number of gait cycles. We recon-

structed the center-of-mass dynamics using delay-coordinate

embedding on various scalar projections of these raw data.

We reconstructed the limb dynamics by converting the 3D

positions to joint angles and then embedded those angle

traces. Finally, we calculated the maximal Lyapunov expo-

nent k1 of each of the embedded trajectories using the algo-

rithm of Kantz.21

Quantifying the dynamic stability of human locomotion

is not a trivial task. Early work used k1 as a proxy for stabi-

lity in walking studies,9 an approach that has been employed

extensively since then (e.g., Refs. 4, 5, 24, and 25). Later

authors unpacked the notion of stability in more detail. Full

et al., for instance, suggested a detailed approach that

decomposes each trajectory into limit cycles and quantifies

the rates of recovery from perturbations in different state-

space directions.15 In a recent review paper,3 Bruijn et al. list

three requirements for gait stability: recovery from small

perturbations, recovery from large perturbations, and a defi-

nition of “large” that encompasses all foreseeable perturba-

tions. They found that the maximal Lyapunov exponent is

not only a good measure for quantifying the ability to

recover from small perturbation but also a good predictive

measure of fall risk.

Unlike Ref. 3, we focus neither on fall risk nor on

walking. Rather, we are interested in the small-scale pertur-

bations that occur during normal running (e.g., irregularities

in the running surface) and how they evolve over time scales

smaller than the stride interval. We take the straightforward

dynamical systems interpretation of the term “stability”—

that is, whether those perturbations grow or shrink. We quan-

tify the answer to that question using the maximal Lyapunov

exponent of the dynamics, calculated following the classic

dynamical systems approach. An important issue that under-

lies all of this analysis is the stationarity of the dynamics:

e.g., whether the system reacts differently to endogenous and

exogenous perturbations. All of these issues are discussed

later in this paper.

A nonlinear time-series analysis approach is useful not

only for exploring the nonlinear dynamics of running but

also for assessing the sensitivity of those dynamics to pertur-

bations. A better understanding of these effects could poten-

tially inform the design of better prostheses for running. A

careful assessment of dynamics is also useful for understand-

ing the intertwined roles of symmetry and stability. Seeley

et al.30 and Gundersen et al.,17 for instance, demonstrated

that healthy walking gait is bilaterally symmetrical, even

though slight asymmetries may develop to accommodate for

changing environmental factors. Skinner and Effeney31

found significant bilateral asymmetries in the lower-limb ki-

nematics of people with leg amputations during walking;

Enoka et al.12 found similar asymmetries in running. During

running and sprinting, Grabowski et al. determined that peo-

ple with a unilateral transtibial amputation applied signifi-

cantly less force to the ground with their affected leg than

their unaffected leg.16 It is not known, however, if that kind

of force asymmetry affects the dynamic stability of gait.

Variability and asymmetry are not necessarily detrimental;

in the introduction to the 2009 focus issue of CHAOS on

“Bipedal Locomotion–From Robots to Humans,” Milton27

writes, “Thus it is possible that a certain amount of kinematic

variability in certain aspects of performance might be indica-

tive of a healthier dynamical system.” A comparison of the

gait dynamics of non-amputee runners to those of runners

with a unilateral transtibial amputation may elucidate these

subtle effects.

The research reported in this paper was driven by three

hypotheses:

1. For individuals with or without a transtibial amputation,

dynamic stability will decrease at faster running speeds.

This hypothesis was based on the work of England

and Granata, who found that faster walking speeds lead

to larger k1 (viz., less stability).11 We expected a simi-

lar relationship between speed and stability during

running.

2. The k1 of the lower-limb dynamics of runners with a uni-

lateral transtibial amputation will be asymmetric, across

all speeds.

This followed from the geometric asymmetry of the

dynamical system, defined as the notable anthropomor-

phic differences (mass and moment of inertia) between

the affected and unaffected legs, as well as the loss of

muscular control in the affected leg.

3. The k1 of the center-of-mass dynamics of runners with a

unilateral transtibial amputation will be greater than in

non-amputee runners.

This hypothesis was based on the rationale that sym-

metry in the lower limbs poses a challenge to maintaining

overall stability during locomotion.

Our study confirmed our first two hypotheses. All but

one of the k1 values increased with running speed. The

exception was the dynamics reconstructed from the vertical

position of the center of mass in runners with amputations,

where the k1 first rose and then fell as running speed

increased. We found that lower-limb dynamics were gener-

ally less stable (viz., higher k1) for the affected leg of runners

with amputations than for their unaffected leg—or than for

either leg of the non-amputee runners. All lower-limb k1 val-

ues increased with running speed, but the inter-leg and inter-

group relationships remained largely the same. Surprisingly,

though, our results showed that the center-of-mass dynamics

of non-amputee runners were slightly less stable than in run-

ners with a unilateral transtibial amputation.

Sections II and III describe how the data for this study

were collected and analyzed. The results are presented in

Sec. IV and discussed in Sec. V.

II. DATA COLLECTION

A total of 17 subjects—6 runners (4 male and 2 female)

with a unilateral transtibial amputation and 11 runners

(8 male and 3 female) without amputations—participated in

the study described in this paper. In the rest of this docu-

ment, members of these two groups are designated with the

acronyms WA and NA, respectively. All of the experiments

occurred at the Biomechanics Laboratory of the Orthopedic

Specialty Hospital (Murray, Utah). A photograph of the
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setup is shown in Figure 1. All subjects gave informed writ-

ten consent according to the Intermountain Healthcare IRB

approved protocol. Each WA subject used his or her own

sprint-specific passive-elastic prosthesis during the tests. We

measured each subject’s height, mass, prosthesis mass, and

standing leg lengths. We defined leg length as the vertical

distance from the greater trochanter to the floor during stand-

ing. We measured the length of the affected leg of each WA

subject when it was unloaded, by having the individual stand

with a 2 in. wooden block under the unaffected leg.

Subjects performed a series of constant-speed running

trials on a custom high-speed treadmill (Treadmetrix, Park

City, UT). Each trial consisted of at least ten strides except

for top-speed trials, which consisted of 8 strides. After a brief

warm up, subjects started the series of running trials at 3 m/s.

Each subsequent trial speed was incremented by 1 m/s until

subjects reported that they were approaching their top speed.

Smaller speed increments were then employed until subjects

reached their top speed, defined as the speed at which they

could not maintain their position on the treadmill for more

than eight strides.33 Subjects were allowed as much time as

desired between trials for full recovery. The pelvis position

was defined by reflective markers attached to the anterior

and posterior iliac spines and iliac crests of the right and left

sides. We used reflective marker clusters to define the thigh

and shank segments. In order to define the hip and knee joint

centers, we also placed reflective markers on the greater tro-

chanters and the medial and lateral femoral condyles of the

right and left legs. We used a marker placed over the sacrum

as a proxy for the center of mass. We used motion-capture

cameras (Motion Analysis Corporation, Santa Rosa, CA) to

measure the 3D positions of those markers at a rate of

300 frames per second, then calculated the joint angles from

those data using Visual3D software (C-Motion, Inc.,

Germantown, MD). We did not normalize the timebase of

each data set to the average stride period, as is done in some

gait studies, because that operation would obscure the speed

effects in which we were interested.35

We used the spatial position of the sacrum marker at the

base of the spine to study the center-of-mass dynamics. This

is, of course, an approximation. The sacrum location is close

to the overall body COM when a person stands in the stand-

ard anatomical position. However, when a person runs, their

COM position moves within the body. It is possible to esti-

mate the COM location using a segmental approach, but this

methodology relies on many assumptions and estimates

about human body segment parameters. Furthermore, there

are no established methodologies for estimating how an

amputation and/or the use of a running-specific prosthesis

affects the position or movement of the COM. Thus, we

chose to use the sacrum marker as a proxy for estimating the

COM location and studying its dynamics during running.

III. TIME-SERIES ANALYSIS

The time-series data described in Sec. II comprised

time-series traces of dozens of joint positions in 3D space.

To reconstruct the locomotion dynamics from these data, we

used delay-coordinate embedding. Provided that the underly-

ing dynamics and the observation function h that produces

the measurement x(t) from the underlying state variables X
of the dynamical system are both smooth and generic, the

delay-coordinate map

Fðs;mÞðxÞ ¼ ð½xðtÞ xðtþ sÞ � � � xðtþ ðmÞsÞ�Þ; (1)

with delay s from a d-dimensional smooth compact manifold

M to Rm is a diffeomorphism on M if the embedding dimen-

sion m is greater than 2d.32 Here, M is the dynamics of the

human body; h is the measurement executed by the motion-

capture system, plus the post-processing involved in the

conversion from marker positions to joint angles.

Since the body is a coupled dynamical system, one

should theoretically be able to use delay-coordinate embed-

ding to reconstruct its d-dimensional dynamics from any sin-

gle joint position (or angle). Here, though, we wished to

focus on smaller units of the body. To this end, we used the

medio-lateral (x), anterior-posterior (y) and vertical (z) posi-

tion coordinates of the sacrum marker to assess the center-

of-mass dynamics. To explore the lower-limb dynamics, we

used the sagittal plane knee- and hip-joint angles. Examples

of these data can be seen in Figure 2, which shows traces of

the knee-angle data from two of the runners in this study,

one NA and one WA subject. The temporal patterns in the

left- and right-knee angles of the NA runner are very similar,

though they are of course roughly 180 degrees out of phase.

There is an obvious difference, however, between the knee

angles of the affected and unaffected legs of the WA subject.

All four traces—both knees of both runners—demonstrate

largely, but not completely, periodic motion.

To reconstruct the state-space dynamics from these

time-series data, we followed standard procedures regarding

the choice of appropriate values for the embedding parame-

ters: the minimum of the mutual-information curve14 as an

estimate of the delay s and the false-near neighbors tech-

nique of Ref. 23, with a threshold of 10%, to estimate the

embedding dimension m. Figure 3 shows the mutual infor-

mation and false-near neighbor curves for the time-series

data of Figure 2. To perform these calculations, we used

TISEAN’s mutual and false_nearest tools.1 The
FIG. 1. Subject with a unilateral transtibial amputation running on a high-

speed instrumented treadmill.

043131-3 Look et al. Chaos 23, 043131 (2013)



corresponding embeddings are shown in Figure 4. For both

legs of both subjects, m¼ 3 was sufficient to unfold the dy-

namics and the first minima of the mutual information curves

occurred between 52Dn and 56Dn, where the sampling inter-

val Dn is 1/300th of a second. The embedded trajectories

have a characteristic figure-eight shape that reflects the gen-

eral pattern of running gait, but with visible stride-to-stride

variations.

To study these patterns and variations, we employed

the algorithm of Kantz,21 as instantiated in TISEAN’s

lyap_k tool, to estimate the maximal Lyapunov exponent

k1 of the embedded data. First, we plotted the log of the

expansion rate SðDnÞ versus time Dn and verified that the

curves were of the appropriate shape: a scaling region fol-

lowed by a horizontal asymptote, which should occur when

the time horizon of the algorithm is large enough to allow

neighboring trajectories to stretch across the diameter of the

attractor. We then fit a line to that scaling region and deter-

mined its slope. If the R2 value of that fit was less than 0.9,

we discarded that trial. Note that this approach differs from

some of the k1-based work in the biomechanics literature.

Ref. 9, for instance, defines a short-term kS as the slope cal-

culated using the heights of the SðDnÞ versus time Dn curve

at two fixed landmarks (0 and 1.0 strides) and a long-term kL

that is calculated over a fixed multiple-stride interval (usually

the height of the curve at 5 and 10 strides). Different authors

use different a priori landmarks for these calculations; Ref. 4,

for instance, uses the points at 0 and 0.5 strides to calculate

kS and the points at 4 & 10 strides to calculate kL. We chose

to follow the standard practice in the nonlinear dynamics lit-

erature, choosing the segment of the SðDnÞ vs. Dn curve to fit

from its actual geometry, not some a priori fixed interval.

Figure 5 shows the logSðDnÞ versus Dn curves for the

time-series data in Figure 2, embedded using the s and m val-

ues suggested by the curves in Figure 3. These results indi-

cated that the dynamics of both knees of each of these two

runners was sensitively dependent on initial conditions, with

k1 ranging from 0.0928 to 0.1220. In both subjects, the k1

values differed between the two legs, but the difference was

more pronounced for the WA subject. This pattern is dis-

cussed at more length in Sec. IV.

Several different timescales are involved in this analy-

sis. All k1 values that are reported in this paper are in units

of the inverse of the sampling interval of the data (3.3 ms).

To convert these k1 values to inverse seconds, as in the pre-

vious paragraph, one multiplies them by the sampling fre-

quency (300). The k1 value of 0.0955 for Figure 5(a), for

instance, indicates that the e-folding time of the dynamics is

10.5 sample intervals—or 0.035 s. The stride interval of the

runner is another important timescale, and it varies across

subjects and speeds. In many gait dynamics studies, the time-

base of each trace is normalized to the average stride or step

period in that trial. That makes sense when one is studying

the long-term dynamics across multiple strides. Our work,

however, focuses on the small-scale perturbations that occur

during normal running and how those perturbations evolve

over time scales that are smaller than the stride interval. All

of our SðDnÞ vs. Dn curves, like Figure 5, saturated after

10-20 sample intervals—i.e., 0.033–0.067 s. These time-

scales are far shorter than the stride intervals in this study,

which ranged from 0.44 to 0.77 s. The stride interval of the

NA subject in Figure 2, for instance, was 0.65 s, which is

18.7 times the e-folding time (0.035 s) of the associated dy-

namics that is indicated by Figure 5(a). If the stride interval

were shorter, the same e-folding time would be a larger por-

tion of that interval. Normalizing the timebases of each trace

to stride interval, then, make the same absolute e-folding

time look smaller as the stride rate increases with increasing

running speed—simply because the “time” units in which it

is measured are getting larger. This effect would artificially

lower the value of k1 with increasing running speed, so we

do not take that approach here.

FIG. 2. Sagittal-plane knee angles for (left) a non-amputee runner and (right) a runner with a unilateral transtibial amputation, both running at 4 m/s. Blue and

red correspond to the left and right leg, respectively, of the NA runner, and to the affected and unaffected leg, respectively, of the WA subject. 0� is full exten-

sion; negative angles correspond to flexion of the joint.
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All of the nonlinear time-series analysis algorithms

mentioned in this section are known to be sensitive to data

and parameter effects.22 These systematic uncertainties

preclude the use of traditional statistics to assess or com-

pare their results, but there are other ways to perform “due

diligence.” We validated all k1 calculations by repeating

them for a range of values of the various algorithmic pa-

rameters. Of these, the two most critical are the embedding

dimension m and the scale parameter (�) in the lyap_k
algorithm.36 We discarded any trial for which this process

produced inconsistent results (i.e., large variation with

m and/or �). As mentioned above, we also discarded all

results from SðDnÞ versus Dn curves that did not have a

clear scaling region. We repeated all of these calculations

on seven traces (right and left knee- and hip-joint angles,

plus the x, y, and z positions of the sacrum) for each of the

17 subjects across a range of running speeds. Section IV

summarizes the results and examines the differences and

similarities between and across subjects, groups, speeds,

and legs.

FIG. 4. Delay-coordinate embeddings of the traces in Figure 2 with the s
and m values suggested by the curves in Figure 3. Again, time (t) is in units

of Dn, the inverse of the 300 Hz sampling rate of the time series.

FIG. 3. Estimating embedding parameters for the data of Figure 2: mutual

information as a function of the delay s, plotted in units of the sampling rate

Dn ¼ 1=300th of a second, and % false near neighbors as a function of

the dimension m. The minima of the mutual information curves occur near

s ¼ 52Dn (i.e., 173 ms) for both knees of the non-amputee (“NA”) runner

and s ¼ 55Dn (i.e., 183 ms) for both knees of the runner with a unilateral

transtibial amputation (the “WA” subject). All four false near neighbor

curves drop to 10% at m¼ 3. Color code as in the previous figure: blue and

red correspond to the left and right leg, respectively, of the NA runner, and

to the affected and unaffected leg, respectively, of the WA subject.
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IV. RESULTS

A. Knee dynamics

Our analysis of the embedded knee-joint dynamics sup-

ports our first hypothesis: k1 generally increases with run-

ning speed for all runners, with and without amputations.

The average k1 of the right and left knee angles of the NA

runners increased from 0.095 and 0.101 at 3 m/s to 0.137 and

0.136 at 9 m/s, respectively. The overall trends—higher k1 at

faster running speeds—were similar for the WA subjects,

further supporting our first hypothesis. The average k1 of

WA subjects was 0.103 and 0.090 for affected and unaf-

fected legs, respectively, at 3 m/s; at 9 m/s, the corresponding

values were 0.138 and 0.124. Not all of these increases are

monotonic; this is not surprising in a study with only six WA

and 11 NA subjects, given the complexity of the data-

gathering task. Figure 6 plots the k1 values for both groups

across all running speeds.

The symmetry of the system—the subject of the second

hypothesis—is reflected in the similarities and differences

between the curves in Figure 6. As one would expect, the

left and right knee dynamics were quite similar in the NA

subjects, who have two intact biological legs—although the

k1 values did diverge somewhat at the fastest running speed.

Not surprisingly, the differences between legs in the WA

subjects were more pronounced and more consistent across

all speeds. This result is consistent with our second hypothe-

sis regarding inter-leg asymmetry in this group.

B. Hip dynamics

The k1 values for the reconstructed hip-joint dynamics

were also consistent with our first two hypotheses. The aver-

age k1 of NA runners was 0.098 and 0.103 at 3 m/s for the

right and left legs, respectively; these values increased to

0.119 and 0.116 at 9 m/s (Figure 7).

Again, the values for the right and left legs were gener-

ally similar for the NA subjects, reflecting the symmetry in

their running gait. As in the case of the knee-angle results in

Sec. IV A, the embedded hip-joint data provide some indica-

tions of asymmetry in the dynamics between unaffected and

affected legs of the WA subjects, again supporting our sec-

ond hypothesis. The average k1 of WA subjects was 0.113

and 0.075 at 3 m/s for the affected and unaffected legs,

respectively; these values increased to 0.131 and 0.122 at

9 m/s. The convergence of the WA k1 values at higher

FIG. 6. k1 values for the embedded knee-joint dynamics of non-amputees

and subjects with amputations. The values reported are in units of inverse

Dn, the sampling interval of the data; to convert them to inverse seconds,

one multiplies by the 300 Hz sampling rate.

FIG. 5. Lyapunov exponent calculations for the embedded data of Figure 3.

The slopes of the scaling regions of these curves—fit by the superimposed

lines in the plots—represent estimates of the maximal Lyapunov exponent

k1 of the corresponding trajectories. As before, time is plotted in units of the

sampling interval Dn ¼ 1=300th s. The stride intervals in these trials were

0.65 and 0.71 s for the NA and WA subjects—i.e., 196 and 211 sampling

intervals, respectively.
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running speeds that is apparent in Figure 7—a reduction in

the asymmetry in the dynamics—might indicate that while

there could be many different mechanical choices to run

slowly (i.e., fewer constraints), there may only be one effec-

tive way to run at faster speeds.

Overall, the average k1 increased with running speed for

both legs in both groups, again supporting our first hypothesis.

Since the knee and hip angles are measurements of the same

dynamical system—essentially, different measurement func-

tions h applied to the same underlying dynamics M—these

corroborations are not surprising.

C. Center-of-mass dynamics

As described at the end of Sec. II, we used the sacrum

marker at the base of the spine as a proxy for the center-of-

mass position. See Figure 8 for k1 values for the dynamics

reconstructed from the medio-lateral and vertical positions of

this marker. (The anterior-posterior position of the sacrum dur-

ing treadmill running reflects more about the subjects’ ability

to match treadmill speed than anything else, and hence was

not included in these analyses.) For reasons that are discussed

in Sec. V, the nonmonotonicity in these curves is more pro-

nounced than in the hip and knee data. The k1 of the medio-

lateral dynamics of the sacrum marker generally increased

with running speed, as did the k1 of the vertical dynamics of

the NA runners. These findings are in accordance with our first

hypothesis. However, the dynamics reconstructed from time-

series data of the vertical position of the sacrum in WA sub-

jects exhibited a different pattern: first rising and then falling

as running speed increased. This pattern is significantly differ-

ent from those in the hip- and knee-joint dynamics. Since all

of these data are simultaneous measurements of different mac-

roscopic variables in the same dynamical system, this discrep-

ancy between joint dynamics and center-of-mass dynamics is

a puzzling finding from a dynamical-systems standpoint; see

Sec. V for more discussion of this issue.

The sacrum position data also had interesting implica-

tions regarding our third hypothesis (that the center-of-mass

dynamics of WA runners will be less stable than in NA run-

ners37). The answer appears not to be so simple. Across all

speeds, k1 was smaller in the vertical dynamics for WA run-

ners—i.e., those dynamics were more stable. In the medio-

lateral direction, WA runners were as stable as NA runners

at slower speeds, but the k1 values diverged at higher speeds.

V. DISCUSSION

A nonlinear time-series analysis of knee, hip, and sac-

rum dynamics of runners with (NA) and without (WA) a uni-

lateral transtibial amputation confirmed our hypothesis that

k1 generally increases with running speed, with one excep-

tion: the vertical position of the sacrum marker of WA run-

ners, where the k1 of the embedded time-series data first rose

and then fell as running speed increased. It may be the case

that runners exert increased control of the core to compen-

sate for decreased stability elsewhere, and this effect may be

more pronounced in WA runners.

Our second hypothesis concerned symmetry in the em-

bedded lower-limb dynamics for WA subjects. Our analysis

indicated that the k1 of the embedded time-series data from

the affected leg was indeed higher than for the unaffected

leg—except for knee data at low speeds, where this differ-

ence was present but not pronounced.

Our third hypothesis—that the k1 of the center-of-mass

dynamics of WA runners would be higher than for NA run-

ners—was not verified by this analysis, except for a single

midrange speed (5 m/s) in the embedded medio-lateral sac-

rum position data. This may be due to the effects noted in

the first paragraph of this section. It is also important to note

that we observed small amounts of nonstationarity in the

medio-lateral data due to subtle changes of the subjects’

side-to-side positions on the treadmill. Although others have

minimized these kinds of nonstationarities in the signal using

divided difference methods prior to computing Lyapunov

exponents,10 we avoided that approach because difference

FIG. 8. k1 values for the embedded sacrum-position dynamics of non-

amputees and subjects with amputations. The values reported are in units of

inverse Dn, the sampling interval of the data; to convert them to inverse sec-

onds, one multiplies by the 300 Hz sampling rate.

FIG. 7. k1 values for the embedded hip-joint dynamics of non-amputees and

subjects with amputations. The values reported are in units of inverse Dn,

the sampling interval of the data; to convert them to inverse seconds, one

multiplies by the 300 Hz sampling rate.
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methods can amplify any inherent noise in the signal.

Moreover, we believe that these slight nonstationarities may

represent behavior that is dynamically meaningful, as

opposed to the kind of unavoidable drift that occurs in a

measurement sensor. That is, slight changes in the subject’s

position from step to step may represent responses to local

disturbances during running, thus providing additional

insight into dynamic stability.

Readers from the biomechanics community will have

noted that we did not do any of the traditional statistics anal-

yses on these results—e.g., fitting a regression line to the

data in the tables and giving an R2 value to quantify our cer-

tainty about whether or not those data validate a particular

hypothesis. Numerical algorithms that extract important

properties of complicated nonlinear dynamical systems are

based on approximations of the associated theory. They

involve a number of parameters that strongly affect the

results, and they are notoriously sensitive to noise, data

length, and other sampling effects. Because of this, algo-

rithms like lyap_kmay inject systematic biases in the results,

which violates the underlying assumptions of traditional statis-

tics.38 A systematic exploration of these effects is mandatory if

one is to believe the results: minimally, a comparison of the

results of different algorithms and a careful exploration of the

parameter space of each one. We performed all of these kinds

of checks on our results, as described in Sec. III.

At this point, we are unaware of any other studies that

have quantified the nonlinear dynamics of time-series data

for individuals with unilateral amputations running across a

range of speeds, as described here. Our findings on this

unique population of runners, then, are difficult to compare

directly to other work. Enoka et al.12 were the first to provide

important insights into the asymmetries that exist between

the biological and prosthetic leg in individuals with unilat-

eral amputations. As was normal in that era, the runners with

amputations used inelastic prostheses designed for walking,

not running. Yet, they were able to run at speeds ranging

from 2.7 m/s–8.2 m/s and exhibited notable kinematic intra-

limb asymmetries, e.g., significant reductions in the joint

angle range of motion of the prosthetic leg compared to the

biological leg. The leg prostheses used by runners in our

study were designed to mimic the spring-like mechanical

behavior of biological legs more closely. Even so, we

observed slight asymmetries in the stability of the hip and

knee dynamics. We also observed slight asymmetries in the

stability of the hip and knee dynamics, suggesting that

running-specific prostheses do not yet exactly replicate the

biomechanical function of biological legs.

Data issues—number and length of trials, as well as

noise level and sampling effects—are present in any experi-

mental study, especially one involving complex laboratory

apparatus and human subjects at the edge of their normal

operating regime. Our study involved only 17 subjects, not

all of whom ran at all speeds. The “due diligence” demanded

by nonlinear time-series analysis—careful examination of

the geometry of the results produced by the algorithms, a

thorough exploration of the parameter space of those algo-

rithms, and rejection of any data that did not clearly pass

those checks—further reduced the number of trials that are

averaged into the numbers reported here. This issue was

strongest in the WA data, where we had only six subjects,

and in the medio-lateral direction, where the subjects’ side-

ways drift on the treadmill challenged the lyap_k algo-

rithm. The 3 m/s and 8 m/s points on the WA medio-lateral

k1 curve in Figure 8, for instance, are averages across only

two trials, which makes them somewhat suspect. One of the

trials that is averaged into the 9 m/s NA medio-lateral k1 is

also problematic because its k1 value drops precipitously

from 8 to 9 m/s. We suspect that this is due to the natural

nonstationarities that are involved in reaching one’s top

speed. Top-speed trials often ended with a high-speed tread-

mill dismount. In all of our analyses, we discarded the first

and last segment of the data (resp., before the subject’s gait

equilibrated and after s/he dismounted from the treadmill),

but the dynamics may also be changing in the time period

leading up to the dismount. This brings up another issue. It is

well known that the effectiveness of algorithms for calculat-

ing k1 improves with the length of the time series. Bruijn

et al.4 noted this effect in the context of human walking stud-

ies, where k1 values stabilized when the length of the time

series reaches a few hundred strides. Walking is a very dif-

ferent gait, however, so one cannot extrapolate those effects

to running and sprinting. And because those gaits cannot, by

definition, be sustained for very long, we cannot, unfortu-

nately, explore this effect across all of our data.

Readers from the nonlinear dynamics community will

have noted the differences between the k1 values. This bears

some explanation since the different time-series data sets

studied here are simultaneous samples of the same nonlinear

dynamical system. Theoretically, the k1 values of the dynam-

ics reconstructed from these different time-series datasets

should be the same. This holds if the sensors that measure

those different angles produce smooth, generic functions of

at least one state variable of that system, and as long as the

dynamics themselves are smooth. In practice, the length of

the datasets plays a role as well. If the dynamical coupling

between parts of the body is weak, that coupling will not

manifest during a short time series and thus the “invariants”

of the reconstructed dynamics will not be the same from

joint to joint. Since we were interested in the dynamics of

gaits that could not be sustained indefinitely (viz., running at

top speed), gathering longer time series was not an option.

The k1 values reported here, then, are really more like local

ks,2 also known as finite-time Lyapunov exponents, and they

should not be expected to be identical across the entire body.

There may be other effects at work here: the sharp ground-

contact forces of running may disrupt the smoothness of the

dynamics, and the movement of the residual limb within the

prosthetic socket (“pistoning”) may add dynamics.

This study raises a variety of interesting questions

regarding stability, symmetry, and the effects of a running-

specific prosthesis. In this paper, we follow the practice of

defining dynamic stability as the resistance to a small pertur-

bation. Perturbation size is an obvious issue here. A large-

enough perturbation may bump the trajectory completely out

of the basin of attraction of the almost-periodic running gait

attractor—or cause the dynamics to bifurcate altogether.

This is third criterion of Bruijn et al.3 for gait stability: “the
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largest recoverable perturbation specified by the limits of the

system needs to be larger than the perturbations encoun-

tered.” If this limit is exceeded, falls may occur. Our work

focused on the small-scale perturbations that occur during

normal running and how they evolve over time scales

smaller than the stride interval. While large-scale perturba-

tions and fall dynamics are important, we believe that these

small-scale instabilities are also dynamically and biologi-

cally meaningful.

Perturbation provenance is an even more complicated

issue here. It is not clear whether the body reacts differently

to endogenous perturbations (e.g., in the neuromuscular sys-

tem) versus exogenous perturbations, like friction or irregu-

larities in the running surface. The analysis presented in this

paper explores the stability of running using the rate of diver-

gence of nearby trajectories in the reconstructed state space.

This provides some indication of how the system responds to

small perturbations, but it does not distinguish between inter-

nal and external perturbations. If the system is autonomous,

this distinction is irrelevant. However, if the dynamics are

nonstationary—that is, if the forward evolution from a given

point in state space depends on how (or when) the system

reached that point—this distinction may be very important.

One could explore this by delivering controlled perturbations

to the subject on the treadmill and studying the resulting dy-

namics. These experiments would be challenging. There are

a number of technical issues surrounding sampling move-

ment trajectories following a perturbation, including the

short time scales over which the body’s internal controller

reacts and the potential hystereses and nonstationarities in

that controller: e.g., a shift from feedback to a feedforward

control strategy. For instance, the body could learn, over

time, to prepare an appropriate response at the expected time

of a perturbation. Since the dynamics of neuromuscular con-

trol systems can occupy different subsets of state space,

depending on the context of the system,8 these kinds of con-

troller actions could significantly impact any results that are

based upon delay-coordinate embedding. Experiments that

elucidated these effects, while challenging, have the poten-

tial to reveal general strategies of how the body’s internal

controller deals with external perturbations and whether

these responses can be captured by nonlinear time-series

analysis.

With regards to dynamic symmetry, the anthropomor-

phic differences between the affected and unaffected legs of

runners with a unilateral transtibial amputation are accompa-

nied by slight asymmetries in stepping kinematics of running

and sprinting.16 Interestingly, adding mass (�300 g) to the

running-specific prosthesis helps to improve kinematic sym-

metry.16 Similarly, anthromorphic and mass differences

between the unaffected and affected leg may create stability

asymmetries in the dynamics of runners with a unilateral

amputation. Our analysis suggests that the ability to respond

to small perturbations during running may be compromised

in the affected leg as compared to the unaffected leg. It is im-

portant to note that the running-specific prosthesis plus the

socket together weigh �2.3 kg while the biological leg (foot

and shank) weighs �3.6 kg. The question remains as to

whether adding mass to the running-specific prosthesis, as

explored in Ref. 16, would improve the dynamic symmetry

between the unaffected and affected leg in runners with a

unilateral amputation.
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