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Internet fundamentals, part |

* Design assumes that users are good citizens
and that hosts don’t move around

* No screening, address verification, ...
e Source of many current woes



“Malware”
popups
spam
worms, viruses
botnets
spoofing
sniffers
direct attacks
denial-of-service (DoS) attacks



Solutions

popups: good browser design & hygiene
spam: spam filters

worms, viruses: anti-virus software

botnets: anti-virus software

spoofing: authentication

sniffers: cryptography, anti-virus software

direct attacks: firewalls
denial-of-service (DoS) attacks: this talk



Internet fundamentals, part Il:

Design assumes that data can get lost
So retransmission is built into its protocols

Which means that it's OK to drop resource
requests

The trick is to drop as few of them as possible to
keep the resource unclogged.



Internet fundamentals, part lll:

The “black hats” observe the defenses and adapt
Rapid co-evolution
So any kind of static response won’t work

Have to respond adaptively...



» Build an adaptive stochastic model of
resource usage

» Use a nonlinear model-reference PID
controller to screen resource requests



What computer systems typically do to
handle overload:

« Set hard limits (e.g., drop-tail queue mgmt)
» Control average demand

» Use ad hoc linear proportional closed-loop
controllers (at best)



The model: Birth/Death Markov chain
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Well known, widely used, and broadly applicable
State ranges from O to n

Edges denote possible state transitions

Edges are annotated with transition probabilities
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Stationary distributions of the BD chain:
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Key point: can calculate the distribution shape from p and g
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What if you wanted a different distribution?

Probability

Key point: can calculate what p and q would give rise to this shape

Control strategy:

e (Calculate desired p, q

e Estimate actual p, q

e (Gatekeep on the difference
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Controller architecture:
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System under control
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Reference distribution: Q(i)
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Probakility
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Reference distribution: Q(i)
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Calculate transition ratios: Q(i+1)/Q(i)
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Estimate transition probabillities:
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Calculate desired p
and drop resource requests accordingly:
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Model-reference feedback control loop:
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Frokbakbility

What if R(3-1) is incorrect?
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That second feedback loop adjusts it:
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Nonlinear transform accelerates
convergence:
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Denial of Service (DoS) example:

Attacker 1 » Victim < -, Bystander

e identical unix machines

* 10 Mb/sec networks
* NB: single s/w manager in victim handles all incoming traffic
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Without control:

Attacker 1 »  Victim -« -, Bystander

96.9% packet loss 97.0% packet loss
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With control:

Attacker 1 »  Victim -« -, Bystander

93.4% loss 0.0% loss
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Results:

* |t works.
It converges fairly quickly (1-3 sec in our tests).
« It's lightweight:

— Small amount of code (~100 lines of C)

— Low computational and memory overhead
» |Q| subtracts are primary computational load; runs in usec
« 128 bytes per controller for state information

— Advantages of RED, without RED’s disadvantages (this is the
IETF’s standard for congestion control)
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Half a dozen equations, really...
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How you implement this:

Resource

existing

manager

slots

incoming
requests
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Conclusions:

It works.
It converges fairly quickly (1-3 sec in our tests).
It's lightweight:

— Small amount of code (~100 lines of C)

— Low computational and memory overhead
» |Q| subtracts are primary computational load; runs in usec

« 128 bytes per controller for state information
— Advantages of RED, without RED’s disadvantages

It's broadly applicable (any system that can be modeled by a
G/G/1 queue)

And it has been already been deployed in practice...
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Commercialization. ..

« Patent filing (6/26/2004)
« Secure64 Wildfire/CE? (12/1/2004)
* And then shot down.

JGG's thesis proposal was circulated to other students by a committee
member, which constituted “prior disclosure” and kills a patent. (You
have one year from the first disclosure to file it.)

Moral: be careful with your ideas if you're thinking of patenting them —
keep dated, initialed notebooks, don’t share ideas until you're ready to
patent, etc.

www.cs.colorado.edu/ " lizb/papers/dos.html
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On the stove:

Nonlinear dynamics

Modeling & control of internet attacks

«  Recurrence plots
«  Computational topology & topology-based filters

Artificial intelligence

«  Nonlinear system identification

www.cs.colorado.edu/~1izb
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sgraduate students.
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*postdocs:
Tom Peacock (now at MIT)

sundergrads:
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Schenk, Stephen Schroeder, Evan Sheehan, Josh Stuart (now at UCSC)

faculty:
— Jessica Hodgins, Computer Science, CMU
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— Jean Hertzberg & YC Lee, Mechanical Engineering, CU
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Related work in computer systems lit:

Software Control

— Floyd et al. (RED [2001])

— Hellerstein et al. (servers [1999 — 2003])
— Stankovic (realtime scheduling [1999])
Markov Chain Monte Carlo

— Sinclair & Jerrum (Conductance [1989])
— Morris & Peres (Evolving Sets [2003])
DoS Mitigation

— Mirkovic (D-WARD [2002])

None uses adaptive nonlinear closed-loop control,
though Karmanolis (HotOS 2005) moves in that direction
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What’s different here, from the standpoint of
that community:

Control (shape) the of resource states,
rather than just the average of that distribution or
the instantaneous state

Do this with control

- adaptive: using Markov-chain model and parameter
estimation

- nonlinear: to overcome quasistability effects and improve
performance

- PID: to allow wider range of modern controls techniques
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