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Simplicial Multivalued Maps and the Witness Complex for Dynamical Analysis of
Time Series∗
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Abstract. Topology-based analysis of time-series data from dynamical systems is powerful: it potentially allows
for computer-based proofs of the existence of various classes of regular and chaotic invariant sets for
high-dimensional dynamics. Standard methods are based on a cubical discretization of the dynamics
and use the time series to construct an outer approximation of the underlying dynamical system.
The resulting multivalued map can be used to compute the Conley index of isolated invariant sets of
cubes. In this paper we introduce a discretization that uses instead a simplicial complex constructed
from a witness-landmark relationship. The goal is to obtain a natural discretization that is more
tightly connected with the invariant density of the time series itself. The time-ordering of the data
also directly leads to a map on this simplicial complex that we call the witness map. We obtain
conditions under which this witness map gives an outer approximation of the dynamics and thus
can be used to compute the Conley index of isolated invariant sets. The method is illustrated by a
simple example using data from the classical Hénon map.
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1. Introduction. Our goal in this paper is to develop some new computational topol-
ogy techniques to characterize some aspects of discrete or continuous dynamical systems.
We assume that the only knowledge we have of the dynamics is a finite time series Γ =
{x0, x1, . . . , xT−1} taken from a state-space trajectory of the system. If the system is a map,
f : X → X, then Γ is simply the iterates of the map: xt+1 = f(xt). If the system is a flow,
then Γ is a sequence of samples of the continuous trajectory x(t), and we are effectively study-
ing the evolution operator that maps the system forward in time. In either case, given this
information, we cannot hope to approximate the dynamics on all of X; instead, we assume
that Γ lies close to Λ, a bounded invariant set of f . For example, any orbit in the basin of
an attractor will eventually approach it, so in this case, Γ can be taken to be the trajectory
after a transient is removed. Thus our goal is to develop tools that will allow us to charac-
terize properties of f |Λ, such as the number and types of periodic orbits, compute topological
entropy, etc.
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The tool that we use is the discrete Conley index (we recall the definition of this index and
related concepts in Appendix B) [Con78, Eas98, KMM04]. The Conley index characterizes
some dynamical properties of isolated invariant sets of f—for example it may establish the
existence of periodic orbits or give a lower bound on the topological entropy.

Since we only have access to the trajectory Γ, we must use it to obtain an approximation of
the underlying dynamics before we can compute the Conley index. There are two categories
of maps that can serve this purpose. The first, as we recall in section 2, is multivalued
maps. These are set-valued and are typically defined on a finite covering of a neighborhood
of the invariant set Λ; they capture how the images of the cover map across other elements of
the cover. Multivalued maps have most commonly been defined on cubical grids [MMSR97,
MMRS99], but as we discuss in section 2.1, more general grids can also be used. A multivalued
map on a grid, which we call a cellular multivalued map (CMM) in section 2.2, is defined to be
constant on the interior of each cell as well as on subsets of the boundary where groups of cells
intersect. Note that while connectivity is obvious in uniform grids of cubical cells, this may
not be the case in other grid geometries. The second category of map addresses this issue.
Dual to any grid, cubical or otherwise, is a simplicial complex—the nerve of the grid (see
Appendix A). We call the map induced on this complex a simplicial multivalued map (SMM)
in section 2.2. When the number of grid cells is finite, such maps are finitely representable:
they can be stored precisely in a computer and used to perform exact computations.

The Conley index for an isolated invariant set (defined in Appendix B) can be computed
using a corresponding CMM or SMM (techniques are recalled in Appendix C). Moreover, as
described in section 2.2, if the cellular map is semicontinuous and acyclic, then the map that
it induces on homology coincides with that induced by f , and thus it can be used to compute
the Conley index of isolated invariant sets of f .

The associated computational cost of these computations depends on the geometry of the
cells. To minimize this complexity while still preserving the essential features, our approach
uses two constructions that play major roles in computational topology: the α-diagram [EM92,
Ede95] and the witness complex [dSC04]. In section 2.3 we recall that the α-diagram of a data
set is the intersection of its Voronoi diagram with the union of balls of radius α centered on
the data points. The nerve of the α-diagram is the α-complex: it is generically a simplicial
complex and is a subset of the Delaunay triangulation (see Appendix A), limiting to the
latter as α→∞ [Ede95]. Since the geometry of cells in the α-diagram is dictated by the data,
rather than by rectilinear grid lines, the shape of the α-complex naturally follows that of the
invariant set Λ.

While this flexible, data-driven representation has some appealing advantages, an α-
complex constructed from a long time series Γ = {x0, x1, . . . , xT−1} would have at least
one simplex for each point, and the complexity of algorithms that construct and manipulate
these objects scales poorly with the number of simplices. It is useful, then, to represent these
data using a global topological object that contains fewer simplices while preserving the Con-
ley index. We use the witness complex [dSC04] for this purpose; see section 3. Instead of
assigning a vertex to each point in Γ, we represent the data by a smaller set of vertices, a
set of landmarks, L ⊂ X, and build a simplicial complex from those points. As described in
section 2.3, there are a number of ways to choose landmarks. The computational complexity
of this approach and its comparison to that of a cubical grid are discussed in Appendix D.
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The witness complex is constructed from a relation on Γ × L: each point in Γ may be a
witness to one or more landmarks, and each landmark may have one or more witnesses. Of the
many possible definitions of witness relation, we choose one in which a point x ∈ Γ witnesses
a set σ ⊂ L if the distance between x and any landmark in σ is no more than ε greater than
the minimum distance between x and the full set L of landmarks; see section 3.1. We use
this witness relation to construct an abstract witness complex. The simplest implementation
gives a clique or flag complex: it consists of simplices whose pairs of vertices have a common
witness. As we show in section 3.2, if the landmarks are selected to be sufficiently uniform and
the trajectory is sufficiently dense, then there are conditions under which the witness complex
and the α-complex are the same.

The dynamics on the time series induces an SMM on the witness complex. This SMM also
induces a corresponding CMM on a grid of α-cells based on the landmarks. These witness
maps, which are a primary contribution of this paper, are described in section 3.3. The
construction of the witness map is developed in several steps in section 3 in order to bring
the well-developed theory of [KMM04] to bear on this new formulation and thereby establish
the correspondence between the homology of the witness map and that of the true dynamics
of the underlying system.

Finally, in section 4 we use data generated from the classic Hénon quadratic map to
give a simple illustration of the ideas in this paper. We show that, under a verifiable set of
assumptions, our techniques could be used to obtain rigorous results about the underlying
dynamical system.

2. Multivalued maps. In this section we describe the concept of multivalued maps and
obtain criteria for such maps to be an enclosure of a map f . A cellular multivalued map (CMM)
is defined to be constant on each cell of a grid, generalizing the cubical case of [KMM04]. A
cellular map gives rise to a simplicial multivalued map (SMM) on the nerve of the grid. In the
final part of this section we show that one way to construct a grid is through an α-diagram.
In this case, the nerve is a geometrical simplicial complex that is a deformation retract of the
grid, and we will show that the cellular map and the simplicial map induce the same maps on
homology.

Since we are interested in applications to data sets that correspond to real-valued mea-
surements of continuous dynamical systems, we will assume that our time series Γ is obtained
from a map f on a submanifold X ⊂ R

n. We will use the Euclidean metric, d(·, ·), on R
n. In

the future, it might be useful to consider more general metrics on the submanifold X itself.
We begin by recalling some standard definitions for multivalued maps that approximate

a dynamical system.1

Definition (multivalued map). A multivalued map, F : X ⇒ X, is a map from X to its
power set. That is, for each x ∈ X, F (x) is a subset of X.

We use multivalued maps to approximate continuous maps f : X → X, and the approx-
imation is taken to be “good” if the action on homology induced by F is equivalent to that
induced by f . In order for this to be the case, the action of F must enclose the action of f

1Following [DJM04, DFT08], we denote single-valued maps with lower-case letters, e.g., f , sets and set-
valued maps with capital letters, e.g., F , and combinatorial objects and maps with calligraphic letters, e.g.,
F .
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and not introduce any extra homological structure. These requirements are spelled out in the
following definitions.

Definition (outer approximation). A multivalued map F : X ⇒ X is an outer approxima-
tion of a continuous map f : X → X if f(x) ∈ F (x) for each x ∈ X. In this case f is said to
be a continuous selector for F .

The (weak) preimage of a multivalued map is itself a multivalued map defined as

F−1(y) = {x ∈ X : y ∈ F (x)}.
Definition (semicontinuous). A multivalued map is (lower) semicontinuous if the preimage

of each open set is open.
As usual, the n-dimensional homology group of a set X is denoted Hn(X). We use, for

simplicity, the homology over Z2 so that the torsion subgroups are ignored. Given this, a
multivalued map preserves homology if the image of each point is homologous to a point.
This is captured in the following definition.

Definition (acyclic). A multivalued map F is acyclic if for each x ∈ X,

Hn(F (x)) =

{
Z2, n = 0,
0, n > 0.

The key point is that if F is semicontinuous and acyclic, then every continuous selector
for F induces the same homomorphism in homology—a consequence of the acyclic carrier
theorem [Mun84, Thm. 13.3].

Definition (enclosure). A semicontinuous, acyclic, multivalued map F is an enclosure of
any continuous selector f .

Therefore, one can define the homology induced by an enclosure to be that of any of its
continuous selectors.

In order that this homology be computable, however, it is necessary to obtain a finitely
representable approximation of the map f , and it is this to which we turn next.

2.1. Grids. A grid allows one to construct finitely representable maps that can be outer
approximations of a map f [KMV05, Mro99]. We will consider generalizations of the cubical
cells of [KMM04] to a grid constructed from a collection of cells A = {A1, A2, . . . } in X.
Associated with any such collection is its geometrical realization—the union of these cells as
subsets of X—denoted by

(1) |A| :=
⋃
A∈A

A.

Since the shape and number of neighbors of each cell can vary, such a grid may permit more
efficient computational algorithms than those for cubes of fixed size and shape.2 Nevertheless,
many of the results that appear here are easily adapted from the cubical case.

There are four basic properties for the cells of a grid.
Definition (grid [AKK+09]). A family of nonempty compact sets A is a grid on X if
(a) X = |A|;
2See Appendix D for more discussion of algorithms and associated computational complexity issues.
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(b) for all A ∈ A, A = cl(int(A));
(c) for all A,B ∈ A, if A �= B, then A ∩ int(B) = ∅; and
(d) a finite subset of A covers each compact S ⊂ X.
A prototypical grid is a lattice of closed cubes; indeed, this is the example studied exten-

sively in [KMM04]. An example of a more general grid is shown in Figure 1. The cells in this
grid are α-cells; see section 2.3.

Figure 1. Sketch of a grid, Aα(L), of α-cells (see section 2.3) based on a set of nine landmarks {li} (red
points) and the action of a cellular map FA (2) on two of these cells. Here the image of any x ∈ int(A1) is
A5 ∪A6 ∪A8 ∪A9, and that of any x ∈ int(A3) is A2 ∪A3 ∪A5 ∪A6. If x ∈ A1 ∩A3, then FA(x) = A5 ∪A6.

2.2. Cellular and simplicial maps. A cellular multivalued map (CMM) is a map on the
geometrical realization, (1), of a grid A that is constant on the interior of each cell of A. It
generalizes the cubical multivalued map of [KMM04] to a situation in which the cell boundaries
need not be rectilinear.

Definition (cellular multivalued map (CMM)). A multivalued map FA : |A| ⇒ |A| on the
geometrical realization of a grid A is a cellular multivalued map (CMM) if it is the outer
approximation of f defined by

(2) FA(x) :=
⋂

B∈A : x∈B
{A ∈ A : A ∩ f(B) �= ∅}.

The map FA takes the interior of each cell to the union of the cells that intersect its image
and the boundary shared by multiple cells to the cells that contain the intersection of their
images. An illustration is shown in Figure 1. An implication is that CMMs are semicontinuous
because they map the boundary of each cell to a subset of the image of the cell itself—this is
a straightforward generalization of [KMM04, Prop. 6.17] for the related cubical case.

This construction is not easy to implement on a computer for two reasons: it is a map on
a continuum |A|, and to construct it we must know f(x) for each point x ∈ |A|. The second
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problem is addressed by the witness map introduced in section 3.3. The first problem can
be mitigated by defining a finite map, F : K ⇒ K, on a complex K related to the grid A.
One such complex is the CW-complex [Hat02] formed from A, that is, the collection of cells
{Ai}, together with their faces {Ai∩Aj}, their edges, and so forth. An example is the cubical
CW-complex used in the approach of [KMM04]. Since the CMM FA is constant on each cell
of the CW-complex, it naturally gives rise to an associated combinatorial map. For example,
in Figure 1 the two-cell A1 would be mapped to {A5, A6, A8, A9}, and the one-cell represented
by A1 ∩A3 would be mapped to {A5, A6}.

Our goal is to use a more easily described complex that is also naturally suited to homology
calculations—in particular, a simplicial complex. A natural simplicial complex to use is the
nerve N(A); recall Appendix A. Let L denote a set of labels for the elements of A, and
let σ = 〈l0, l2, . . . , lk〉 be any finite subset of L. The intersection of the cells labeled by the
elements of σ is denoted

(3) Aσ :=
⋂
l∈σ

Al.

A set σ is a simplex in the nerve when Aσ �= ∅; thus
(4) K := N(A) = {σ = 〈l0, l1, . . . , lk〉 : Aσ �= ∅}.
For example, the nerve of the grid in Figure 1 is shown in Figure 2.

Figure 2. Simplicial complex Kα(L) that is the nerve of the α-cells of Figure 1, and the action of the
simplicial map FK (5) on the simplices 〈l1〉 (green), 〈l3〉 (blue), and 〈l1, l3〉 (red).

A CMM FA induces a combinatorial map FK on the nerve that is defined to commute
with the correspondence between the grid and its nerve.

Definition (simplicial multivalued map (SMM)). If FA is a CMM (2) on a grid A, the map
FK : K⇒ K, defined by

(5) FK(σ) := {τ : Aτ ⊂ FA(Aσ)} ,
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is a simplicial multivalued map (SMM).
Note that FK is a combinatorial multivalued map. Its domain consists of simplices and its

range of sets of simplices; moreover, FK(σ) is a subcomplex of K (recall Appendix A). As an
example, the simplicial map induced by the cellular map of Figure 1 is shown in Figure 2. In
this case, since A〈l1〉 = A1, then {〈l5, l6, l8〉, 〈l6, l8, l9〉} ⊂ FK(〈l1〉) as are the nine faces of these
two 2-simplices. Similarly, since A〈l1,l3〉 = A1 ∩A3, then FK(〈l1, l3〉) = {〈l5, l6〉, 〈l5〉, 〈l6〉}.

The definition (5) satisfies the closed graph condition.
Lemma 1 (closed graph condition). If FK is an SMM and τ ≤ σ ∈ K (i.e., τ is a face of

σ), then FK(τ) ⊇ FK(σ).
Proof. Since τ ≤ σ, then by (3) Aτ ⊇ Aσ. Equation (2) implies that FA(Aτ ) ⊇ FA(Aσ),

and so by (5) FK(τ) ⊇ FK(σ).
When the nerve K of a grid A is a geometrical simplicial complex (again, recall Appen-

dix A), it induces a natural CMM on the geometrical realization |K|, the union of the convex
hull |σ| ∈ R

n of each of its geometrical simplices. The map FK : |K|⇒ |K| is the multivalued
map induced by FK; i.e., by analogy with (2),

(6) FK(x) :=
⋂

σ∈K :x∈|σ|
{|FK(σ)|}.

In certain cases, FA and FK contain the same information about homology. We can show
this when the geometric realization of the complex is a (strong) deformation retract of the
geometric realization of the grid, i.e., when |K| ⊂ |A| and there exists a continuous map
r : |A| × [0, 1]→ |A|, such that

(7)

r(x, 0) = x,

r(x, t) = x if x ∈ |K|, and

r(x, 1) := ρ(x) ∈ |K|.
As we will see in section 2.3, this assumption can be verified for an α-grid and its nerve. We
begin with the following “partial commutativity” lemma.

Lemma 2. Suppose that K = N(A) is a geometrical simplicial complex. Let FA and FK be
CMMs as in (2) and (6). If |K| is a deformation retract of |A| and ρ(Ai) = r(Ai, 1) ⊂ Ai,
then for any x ∈ |A|, (FK ◦ ρ)(x) ⊆ (ρ ◦ FA)(x).

Proof. Note that since ρ is onto |K| and is the identity on |K|, ρ(Ai) = |K| ∩ Ai and it
suffices to show that for any x ∈ |A|, FK(ρ(x)) ⊆ FA(x). Furthermore, we note that it follows
directly from (5) that for any simplex σ ∈ K, |FK (σ) | ⊂ FA(Aσ). For an x ∈ Aσ, ρ(x) is a
point in a geometric simplex |σ|. Therefore, by (6),

FK(ρ(x)) ⊆ |FK(σ)| ⊆ FA(Aσ),

as required.
This result is exactly what is needed to show that the maps on homology induced by FK

and FA are isomorphic. In particular, we can prove the following theorem.
Theorem 3. Under the hypotheses of Lemma 2, whenever FA is an acyclic multivalued

map, FK induces the same map on homology as FA.
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Proof. Whenever FA is an acyclic multivalued map, then the definition (5) implies that
FK is as well. Moreover, since there exists a deformation retract (7), ρ∗ is the identity; thus,
the maps ρ ◦ FA and FK ◦ ρ are also acyclic. Now, by Lemma 2, FK ◦ ρ is a submap of
ρ ◦ FA; therefore, it follows that there is a continuous map u : |A| → |K| that is a continuous
selector for both FK ◦ ρ and ρ ◦FA. Thus, if v and w are continuous selectors for FK and FA,
respectively, then (v ◦ ρ) and (ρ ◦w) are continuous selectors carried by (FK ◦ ρ) and (ρ ◦FA).
The acyclic carrier theorem [Mun84, Thm. 13.3] then implies that

(v ◦ ρ)∗ = u∗ = (ρ ◦ w)∗ ⇒ v∗ ◦ ρ∗ = ρ∗ ◦ w∗ ⇒ v∗ = w∗.

By (2), FA is semicontinuous and an outer approximation of f ; therefore, if FA is acyclic,
it induces a well-defined map on the homology groups such that (FA)∗ = f∗. That is, in order
to determine the Conley index (recall Appendix B) for an isolated invariant set of f , we need
only to know the map on homology induced by FA and check acyclicity. In Appendix C, we
recall the theoretical framework and algorithms from [DFT08] that can be used to compute
the discrete Conley index for a multivalued map.

Note that our construction of the CMM FA is still purely theoretical: since we only know
the points in a time series, we do not know the image of every point in the state space and
thus cannot compute the outer approximation. Without this, there is no direct method to
compute the associated simplicial map FK on the nerve. In section 3 we define a new map, the
witness map, that can be computed algorithmically from time-series data. We then provide a
set of conditions under which the witness map and the CMM FA contain the same information
about homology. These results allow us to calculate the Conley index using the witness map
rather than FA.

2.3. α-diagrams and complexes. The concepts in the previous sections can be specialized
to the case of a grid based on an α-diagram3 for a finite set of landmarks, L = {l1, . . . , l�} ⊂ R

n.
Recalling that d(x, y) is the Euclidean metric, we denote the closed ball of radius α centered
at l by

(8) Bα(l) = {x ∈ R
n : d(x, l) ≤ α}

and the distance from x to a set S ⊂ R
n by d(x, S) = infy∈S d(x, y). For a given α > 0, the

α-cell centered at a landmark point li is the intersection of Bα(li) with the Voronoi cell of li:

(9) Ai(α) := Bα(li) ∩ {x ∈ R
n : d(x, li) ≤ d(x,L)}.

We denote the collection of α-cells for a set of landmarks L by Aα(L). An example of a set
of landmarks and their associated α-cells is shown in Figure 1.

In our application it will be important to choose the landmarks to cover the time series
Γ with some accuracy; in particular, there should be a landmark within some prescribed
distance from each element of Γ. The landmarks should also be relatively sparse: the minimal
distance between any two should not be too small. These two requirements are linked, as
will be discussed in section 3. One selection method, advocated by [dSC04], is to choose

3See Appendix A for a discussion of α-diagrams and related simplicial complexes.
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the landmarks from Γ itself by a “max-min” algorithm: choose L recursively by selecting
the farthest point in Γ from the previous selection until the operative density and sparseness
requirements are satisfied, if possible. For the simple example in section 4, we do not choose the
landmarks from the time series, but uniformly in R

n. The general problem of finding the most
appropriate landmarks in an efficient way is an interesting question for future investigation.

It is straightforward to show that a collection of α-cells is a grid.
Lemma 4. When α > 0, the set of α-cells Aα(L) is a grid on |Aα(L)|.
This lemma allows us to define a CMM (2) for any α-grid with α > 0.
The nerve of an α-diagram is the α-complex denoted

(10) Kα(L) = N(Aα(L)).

Since the α-complex is a nerve, it is always an abstract simplicial complex, and, as for the
general case of section 2.2, there is an associated simplicial map FK on (10). Moreover,
whenever the vertices li are in “general position” (recall Appendix A), Kα(L) is a geometrical
complex so that its simplices have dimension at most n and their intersections are faces. We
will always assume that the landmarks are selected to be in general position.

For this case, Edelsbrunner proved that the geometrical realization of the nerve |Kα(L)|
is a deformation retract, (7), of |Aα(L)| [Ede95].4 He also showed that, since the α-cells are
convex, ρ(·) = r(·, 1) can be chosen to preserve inclusion in each specific cell: ρ(Ai) ⊂ Ai.
Thus for an α-grid, the hypotheses of Lemma 2 hold. Consequently, Theorem 3 implies that
whenever the cellular map FA on an α-grid is an enclosure of a dynamical system f , then the
Conley index of an isolated invariant set can be computed from the map induced by FK on
homology.

3. The witness complex and map. In this section, we define a simplicial multivalued
witness map FW on a complex W that is a variant of the witness complexes introduced by
[dSC04]. The goal is to obtain an outer approximation of a continuous map f : X → X when
the only data that we have is a time series Γ = {x0, . . . , xT−1} near an invariant set Λ ⊂ X.
To construct a multivalued map that approximates f , we view the data as “witnesses” to
a set of � nearby landmarks, L = {l1, . . . , l�}. There are many possible methods to choose
appropriate landmarks. One strategy, as mentioned in section 2.3, is the max-min procedure
of [dSC04]; but there are many other possible methods, and indeed it is not necessary that L
be a subset of Γ. The landmarks can be viewed either as the centers of the cells of an α-grid
Aα(L) or as the vertices of a witness complexW(Γ, L). We show below that if the data satisfy
certain density criteria and the landmarks are (more or less) uniformly spaced, then there is
an α for which the witness complex is identical to the α-complex Kα(L) = N(Aα(L)).

The temporal ordering of Γ and the witness relation give rise to both an SMM FW and
an associated CMM, FW , on the α-grid. We show that when the map f is Lipschitz and the
trajectory Γ is dense enough, there is an α such that FW is an outer approximation of f .

3.1. Witness complex. A witness complex is a simplicial complex based on a finite data
set Γ that is intended to be more parsimonious than more traditional Rips or Čech complexes
(recall Appendix A) [dSC04, dS08]. The vertices of the complex are taken from a set of

4See Lemma 10 and the discussion in Appendix A.
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landmarks L whose cardinality is much smaller than that of Γ. The complex W(Γ, L) consists
of those subsets of L that have a witness in Γ. For example, de Silva and Carlsson say a point
x ∈ R

n is a weak witness to a k-simplex if the k + 1 nearest landmarks to x are the vertices
of the simplex. If, in addition, x is equidistant from each of the vertices, then it is a strong
witness to the simplex.

Another way to define witness complexes is through a general construction of Dowker
[Dow52] that associates abstract simplicial complexes with a relation, that is, by the selection
of a subset

(11) R ⊂ Γ× L.

For example, the strong witness complex corresponds to the relation R0 = {(x, l) ∈ Γ × L :
d(x, l) = d(x,L)}. We say that a point x is a witness to a point l if (x, l) ∈ R. Thus,

WR(Γ, l) = {x ∈ Γ : (x, l) ∈ R}

is the set of witnesses to the landmark l. Following Dowker, a relation gives rise to two
abstract simplicial complexes, by vertical and horizontal slices, respectively. In our notation,
the witness complex is the former: the vertices of each simplex in the complex share a witness:⋂

l∈σ WR(Γ, l) �= ∅.
We will use a more easily computed version of the witness complex, a clique complex,

which is the maximal complex with a given set of edges (recall Appendix A). The clique
complex for a given relation (11) is

(12) WR(Γ, L) = {σ : WR(Γ, l) ∩WR(Γ, l
′) �= ∅ ∀l, l′ ∈ σ}.

Note that, though the vertices of each edge in σ must share a witness, there need not be a
common witness to every vertex in σ.

There are many possible choices for the witness relation R. We choose to use a fuzzy
version of the strong witness relation:

(13) Rε = {(x, l) ∈ Γ× L : d(x, l) ≤ d(x,L) + ε}.

That is, x witnesses all landmarks no more than ε farther from x than its nearest landmark.5

The parameter ε represents the fuzziness of the boundary between cells. The definition (13)
becomes the strong witness relation for ε = 0. We will denote the set of witnesses to a
landmark using (13) by Wε(Γ, l), and the resulting clique complex (12) by Wε(Γ, L).

An example is shown in Figure 3 for an orbit of the logistic map on [0, 1] for a parameter
value just above the first period-doubling accumulation point. Here, the landmarks were
selected to be every 30th point in the sorted data, an orbit of length T = 300. The relation
(13) for ε = 0.01 is the set of (blue) points near the diagonal. For the case shown, each point
in Γ is a witness to at most two landmarks, and so the maximum dimension of a simplex in
the complex (12) is one.

5In the notation of [dSC04], this relation corresponds to the complex W (D, ε, 1), where D denotes the
matrix of distances between landmarks and witnesses.
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Figure 3. Witnesses (blue points) defined by the relation (13) for the logistic map, f(x) = 3.58x(1 − x)
with ε = 0.01. The orbit Γ, shown along the horizontal axis (black points), has T = 300 points, and there are
� = 10 landmarks, shown along the vertical axes (red points). The witness relation defines six one-dimensional
simplices (the line segments along the vertical axis), giving a complex with Betti number β0 = 4. These
correspond to the four major bands in the chaotic attractor of f .

One way to compute the relation (13) is to sort the rows of the T × � distance matrix
Dtj = d(xt, lj) in order of increasing size; thus, for the sorted matrix Ds

t,1 = d(xt, L). Then xt
is a witness to all of the landmarks in the first few columns of the tth row of Ds, namely those
for which Ds

t,j ≤ Ds
t,1+ ε. The main computational expense here—the distance calculations—

can be reduced using a kd-tree [FBF77]. In addition, most implementations of efficient k-
nearest-neighbor algorithms return their results sorted in size order. See Appendix D for
more discussion of algorithms and complexity.

The following section describes how the complex Wε(Γ, L) using the witness relation (13)
can be related to an α-complex using the same landmark set, under some conditions on the
selection of the landmarks and α.

3.2. Equivalence conditions for Kα(L) and Wε(Γ, L). The witness complex is based on
the set of landmarks L in R

n that can also be viewed as the centers of an α-grid Aα(L). Since
the α-diagram limits to the Voronoi diagram, it is clear that for large enough α, |Wε(Γ, L)| ⊂
|Aα(L)|. Moreover, for large enough α, the associated α-complex Kα(L) is a clique complex—
just as we have assumed for the fuzzy witness complex using (12). We will show here that when
this is the case—and if the landmarks are not too closely spaced—then Wε(Γ, L) ⊂ Kα(L).
Conversely, when the data Γ are dense enough on |Aα(L)|, we will see that Kα(L) ⊂ Wε(Γ, L).
Consequently, when both sets of conditions are satisfied, the complexes are the same. As the
hypotheses to obtain these results are independent, we state these two results separately.

Theorem 5. For a set of landmarks L, a time series Γ, and α, ε > 0, let Kα(L) be the α-
complex (4) and Wε(Γ, L) be the fuzzy witness complex (12) using the relation (13). Suppose
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that there is a δ > 0 such that Γ is δ-dense on |Aα(L)| and δ ≤ ε/2. Then Kα(L) ⊆ Wε(Γ, L).
Proof. Suppose σ ∈ Kα(L), i.e., there is a y ∈ |Aα(L)| such that Δ = d(y, L) = d(y, li) ≤ α

for all li ∈ σ. We will show that there is an x ∈ Γ that witnesses all the vertices in σ, i.e.,

x ∈
⋂
l∈σ

Wε(Γ, l).

Since Γ is δ-dense, for any y ∈ |Aα(L)|, there is at least one point x ∈ Γ
⋂
Bδ(y). Since

d(y, L) = Δ and d(x, y) ≤ δ, it follows that

d(x,L) ≥ Δ− δ.

Since x ∈ Bδ(y), for any li ∈ σ,

d(x, li) ≤ Δ+ δ ≤ d(x,L) + 2δ ≤ d(x,L) + ε

since δ ≤ ε/2. Hence, x ∈Wε(Γ, li) for each vertex of σ and, therefore, σ ∈ Wε.
Note that Theorem 5 applies even when the witness complex is not defined as a clique

complex. However, to show the converse—as we do next—requires the clique assumption and
also relies on the use of the Euclidean metric.

Theorem 6. Suppose Kα(L) and Wε(Γ, L) are as in Theorem 5, and define

M = max
x∈Γ

d(x,L) and β = min
i �=j

d(li, lj).

If α is chosen so that Kα(L) is a clique complex and

(14) M + ε ≤ α ≤ β√
2
,

then Wε(Γ, L) ⊆ Kα(L).
Proof. Note that Kα(L) and Wε(Γ, L) have the same vertex set, and by assumption each

complex is a clique complex. This means that Kα and Wε are each determined completely by
their edges. It follows that we only need to verify that every edge in Wε is also an edge in Kα.

Suppose that 〈l1, l2〉 ∈ Wε; then these landmarks share a witness; i.e., there is an x ∈ Γ
such that d(x, li) ≤ d(x,L)+ε for i ∈ {1, 2}. We want to show that there is a point y ∈ |Aα(L)|
such that d(y, l1) = d(y, l2) = Δ = d(y, L) ≤ α. In the Euclidean metric there is always a
point y equidistant from the two landmarks such that d(y, li) = 1

2d(l1, l2). Therefore, since
d(l1, l2) ≤ d(x, l1) + d(x, l2) ≤ 2(d(x,L) + ε), then

Δ ≤ d(x,L) + ε ≤M + ε ≤ α,

by (14). Let l3 ∈ L be the next closest landmark to y, besides l1 and l2, and define β1 = d(l3, l1)
and β2 = d(l3, l2). As illustrated in Figure 4, Δ′ = d(l3, y) is minimized when β1 = β2 = β. In
this case, the segment from l3 to y is the perpendicular bisector of the segment from l1 to l2,
and so we have Δ ≤ Δ′ only if Δ ≤ β√

2
. Since Δ ≤ α, this condition is ensured by (14), and it

follows that 〈l1, l2〉 ∈ Kα. Since Kα is a clique complex, we have shown that Wε ⊆ Kα.
In order to apply Theorem 6, Kα(L) must be a clique complex, which is not always true.

However, since the Delaunay complex D(L) (recall Appendix A) is a clique complex (the
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Figure 4. An illustration of the spacing between three landmarks l1, l2, and l3, as in the proof of Theorem 6.
The point y is the midpoint between the two landmarks l1 and l2. By assumption, the distance from l3 to l1 or
l2 is at least β, and it is thus minimized when β1 = β2 = β.

Voronoi cells cover R
d), then K∞(L) = D(L) is a clique complex as well. Indeed, whenever

α is larger than the radius of the biggest circumsphere that defines an n-dimensional simplex
in D(L), then Kα(L) = D(L). For the simple case of a hexagonal array of landmarks in R

2,
these circumcircles all have radius β/

√
3, so it is easy to determine when Kα(L) is clique. For

the trivial case when α < β/2, the α-balls about each landmark are disjoint, so the α-complex
is trivial and also a clique complex.

When Theorems 5 and 6 both hold, then Wε(Γ, L) = Kα(L). In this case, a map defined
using the witness relation may have the same homology as a map on Aα(L). It is to this issue
that we turn next.

3.3. Witness map. Abstractly, we can define a CMM on a grid A(L) that contains the
orbit Γ using any witness relation: whenever x ∈ Ai and there is a witness xt ∈ Γ to the
landmark li, then the image of x should include the cells that xt+1 witnesses. The appropriate
map is defined similarly to the cellular map FA, (2), but only using the data Γ and the witness
relation R.

To obtain a cellular map that induces a simplicial map on the witness complex, we assume
that the hypotheses of Theorems 5 and 6 are satisfied. In this case, there are values of α and
ε such that Kα(L) =Wε(Γ, L).

Definition (cellular witness map). Suppose that α and ε are selected as in Theorems 5 and
6. The witness map FW : |Aα(L)| ⇒ |Aα(L)| for the fuzzy witness complex Wε(Γ, L) is the
CMM

(15) FW(x) :=
⋂

Ai∈Aα(L) :x∈Ai

{Aj ∈ Aα(L) : ∃xt ∈Wε(Γ, li) s.t. xt+1 ∈Wε(Γ, lj)}.

Since by hypothesis the nerve Kα(L) = N(Aα(L)) is also the witness complex, the CMM
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FW induces an SMM
FW :Wε(Γ, L) ⇒Wε(Γ, L)

in precisely the same way that FK was induced by FA, namely by (5). In other words, a
simplex τ ∈ FW(σ) whenever there are witnesses to σ that have images, under the temporal
ordering of Γ, that are witnesses to τ . Indeed, the hypotheses of Theorem 5 imply that each
nonempty image simplex τ ∈ FW(σ), which is automatically in Kα(L) since Aτ �= ∅, is also
in the witness complex, since Kα(L) ⊂ Wε(Γ, L). Thus, to guarantee that the image is in
Wε(Γ, L), we need Γ to be sufficiently dense on the α-shape (δ ≤ ε/2). Under the additional
conditions of Theorem 6, the complexes Kα(L) and Wε(Γ, L) coincide, and we can view the
witness map as having the domain Wε(Γ, L) as well. Thus, to guarantee that the domain is
well defined, we need the landmarks to be more or less uniformly spaced (β not too small),
and each point in Γ to be not too far from a landmark (M not too large).

The fact that the α- and witness complexes coincide gives us hope that FW will carry the
same information about homology as the outer approximation FA. The following theorem
ensures that this indeed is the case when the original map f satisfies a Lipschitz condition on
the grid.

Theorem 7. Suppose that Y = |Aα(L)| is compact and f is Lipschitz on Y with constant
c. Then if Γ is δ-dense on Y and δ ≤ 1

2εmin{1, 1c}, FW is an outer approximation of f .
Proof. We need to show that for any y ∈ Y , f(y) ∈ FW(y). Note that any such y ∈ Ai for

some α-cell Ai and f(y) ∈ Aj for some other α-cell Aj. We need to show that Aj ⊂ FW(Ai)
or, specifically, that there is an xt ∈ Γ such that xt ∈Wε(Γ, li) and xt+1 = f(xt) ∈ Wε(Γ, lj),
where li and lj are the landmarks associated with the α-cells Ai and Aj, respectively. Since
Γ is δ-dense, it follows that there is x ∈ Γ with d(x, y) ≤ δ. Thus, x is at most δ closer to any
landmark than y (whose closest landmark is li),

(16) d(x,L) ≥ d(y, li)− δ,

and consequently

(17) d(x, li) ≤ d(x, y) + d(y, li) ≤ d(x,L) + 2δ.

Since 2δ ≤ ε, it follows that x ∈ Wε(Γ, li). In addition, since d(f(x), f(y)) ≤ cd(x, y) and
2cδ ≤ ε, the same reasoning as in (17) leads to f(x) ∈Wε(Γ, lj).

Note that the points y and f(y) may be in multiple α-cells, but the construction above
applies to each cell, and so the conclusion is unaffected.

We have shown that, under the conditions of Theorems 5–7,
• the witness complex computed from data has the same homology as the union of a set

of α-cells that cover the data, and
• when viewed as a multivalued map on R

n, FW is an outer approximation of the
dynamical system f .

Since the cellular map FW is semicontinuous (recall section 2.2), we know that whenever it is
acyclic, then it is an enclosure of f . In this case, the acyclic carrier theorem implies that the
induced map on homology can be computed from any continuous selector to the witness map
[Mun84, Thm. 13.3]. However, note that acyclicity cannot be guaranteed; it must be checked
when the map is numerically constructed.
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3.4. Computing the map on homology. In our approach, all of the information about
the topology of the invariant set Λ ⊂ X is contained in the simplicial complexW =Wε(Γ, L),
so our computation of the map f∗, the action induced by f on the homology groups, relies
heavily on this simplicial complex. We begin by recalling the notion of a chain map.

A chain map from one simplicial complex to another consists of a homomorphism between
the vertex sets, a homomorphism between the edge sets, etc., each of which commutes with
the boundary operator. Commutation implies, for example, that the boundary of the image of
a k-simplex is mapped to the image of the boundary of the k-simplex. An important feature
of a chain map, ϕ, is that it induces a well-defined map in homology, ϕ∗ [Mun84].

Our strategy in calculating f∗ is to pick an appropriate chain map, ϕ, so that f∗ coincides
with ϕ∗. That is, we select ϕ :W →W to be a chain selector, so that ϕ(σ) ∈ FW (σ) for each
σ ∈ K. Such a selector can easily be constructed using a piecewise linear map between the
topological realizations of the simplicial complexes. That is, we consider |ϕ| : |W| → |W|. If
ϕ is a chain selector for the SMM FW , then it follows that |ϕ| is a continuous selector for FW ,
and hence ϕ∗ = f∗.

In summary, the strategy is as follows. To compute the Conley index of an isolated
invariant set, it is sufficient to construct a CMM FA that encloses f . Yet computing the α-
grid on a given data set and its associated CMM FA can be computationally expensive. In this
section, we have shown how to construct a sparser simplicial complex—the witness complex
Wε(Γ, L). In addition, we define two associated multivalued witness maps—the cellular map,
FW , defined implicitly on |Aα(L)|, and the combinatorial simplicial map, FW , defined on the
finitely determined complexWε(Γ, L). Moreover, when the hypotheses of the theorems in this
section can be verified, Wε(Γ, L) = Kα(L) and FW encloses the dynamical system f . Then
any continuous selector for this map will capture the homomorphism on homology f∗. We
get this continuous selector of FW by constructing a continuous selector of FW and taking its
geometric realization.

4. An example: The Hénon map. The procedure for putting the mathematics of the
previous sections into practice on time-series data from a dynamical system is as follows:

1. Given a time series Γ = {x0, . . . , xT−1} ⊂ X, which we assume lies near an invariant
set Λ ⊆ X, select a set of landmarks, L = {l0, . . . , l�−1}, that are evenly distributed
across Λ (cf. page 1286 and Appendix C). These landmarks will be the vertices of a
simplicial complex.

2. Choose a value for the ε parameter that satisfies the requirement (14) for Theorem 6
and use witness/landmark relationships to simultaneously define a simplicial complex
Wε(Γ, L) and an SMM FW . Note that, even though we never need to construct an
α-complex, (14) implies that there is an α that has the same homology as W.

3. Pick a subset of L as a starting guess for an isolated invariant set and use Algo-
rithms 11, 12, and 14 of Appendix C to find an index pair (|N |, |E|) for f . There are
many different strategies for choosing the initial guess; if one is attempting to find
periodic orbits, for instance, it makes sense to search for recurrent points in the time
series and use the nearest landmark as the starting point for the algorithms. The
important property is that the guess should be a subset of its period-image under the
SMM.
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4. Use a chain selector for FW to calculate f∗ : H∗(|N |, |E|) → H∗(|N |, |E|).
In the rest of this section, we illustrate this procedure on Hénon’s classic map [Hén76]:

(18) f(x, y) = (y + 1− 1.4x2, 0.3x).

This map has an invariant set Λ that is an attractor, and we generate a trajectory Γ of length
T = 105 that starts from the initial condition z0 = (−0.4, 0.3), near Λ. The trajectory is shown
in Figure 5. As a simple test of the witness map technique presented in the previous section,
we use this trajectory to verify the trivial fact that f has a fixed point. We will assume that
Γ is an exact trajectory of (18), making no claim that our computation is rigorous. The latter
could, at least in principle, be done using interval arithmetic. Given (18), of course, a simple
calculation shows that this system has two fixed points. Our goal is to find one of those fixed
points using only the time series Γ. Note that this is a proof-of-concept example and not an
exhaustive exploration of the parameter space of the algorithm. Moreover, it is simple enough
that the homology calculations can be carried out by hand.

Figure 5. Time-series data, Γ, comprising 105 iterates of the Hénon map (18) (gray points) from an initial
condition near the attractor, and the set L of 216 evenly spaced landmarks (blue circles) that approximate the
attractor from which Γ was sampled. Note that the vertical and horizontal scales are different.

We begin by selecting a set of landmarks to approximate the attractor Λ. Again, as a
proof of principle, we simply space these landmarks evenly within the bounding box of the
orbit [−1.5, 1.5]× [−0.4, 0.4]. With the goal of reflecting the structure of the attractor and yet
having significantly fewer landmarks than points on the orbit (� � T ), we use a hexagonal
grid with spacing β = 0.05. Indeed, retaining only those landmarks that are within β of a
time-series point gives � = 216 landmarks (so � ∼ √T ), as shown in Figure 5. This has the
effect of distributing the landmarks across the attractor with enough resolution to detect some
of its fractal structure.
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Figure 6. Witness complex and an index pair (N,E) for the fixed point of the Hénon map. The points
correspond to the landmarks, L, the blue squares represent the isolating neighborhood, N\E, and the red triangles
are the exit set E. The witness complex corresponds to the landmarks, the lines, and the gray triangles.

The next step in the process is to define the witness-landmark relation Rε of (13). Although
we do not need to build an α-complex, it is possible to do so when the requirement (14) is
satisfied. For example, given the hexagonal geometry, the α-complex will be a clique complex
when α < β/2, i.e., when it is trivially totally disconnected, or when α ≥ β/

√
3, the distance

from a vertex to the center of the equilateral triangle of side β. Similarly, by construction,
every data point is in one of the equilateral triangles formed from the landmarks, i.e., M ≤ β√

3
.

The requirement (14) is then satisfied if we choose α = β/
√
2, and

ε ≤
(

1√
2
− 1√

3

)
β.

Recall that, given an ε ≥ 0, a pair (xt, lj) ∈ Rε ⊂ Γ×L (xt ∈Wε(Γ, lj)), according to (13), if
and only if d(xt, lj) ≤ d(xt, L)+ ε. This witness relationship serves to define a clique complex
Wε(Γ, L) by (12): the edge 〈li, lj〉 ∈ Wε if and only if Wε(Γ, li) ∩Wε(Γ, lj) �= ∅. By varying ε
up to the bound above and looking at the resulting complexes, we finally selected ε = 0.005;
this is large enough so that the complex is connected but small enough that the shape of the
complex still reflects the primary fold in the attractor. The resulting complex is shown in
Figure 6.

Having built the witness complex, we then construct the CMM FW : |Aα(L)| ⇒ |Aα(L)|
using the witness-landmark relationships, as described by (15). Next we use the time series
to search for an isolating neighborhood for FW . To apply Algorithm 12, we need a guess
for an isolating neighborhood. For a periodic orbit, this can be found by looking for nearly
recurrent points in the time series [LK89]. Consequently, to choose an initial guess for the
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purpose of finding a fixed point, we can simply search for a time t that minimizes d(xt, xt+1).
Following this approach, we find that x39,436 = (0.6313, 0.1894) is a good candidate—indeed,
it is close to the analytical fixed point (x∗, y∗) ≈ (0.6313544771, 0.1894063431). The cell of
the landmark nearest to this point gives a useful initial guess for the isolating neighborhood
for Algorithm 12. This isolating neighborhood is then used as the input of Algorithm 14 to
obtain an index pair (N,E) for the fixed point of f . The result is shown in Figure 6.

The final step is to calculate the Conley index of the isolated invariant set that is the
invariant part of N \E. From this index, we can then infer the existence of a fixed point. We
begin by taking a close look at the map FW restricted to the index pair (N,E). The index
pair is shown in Figure 6. Recall that FW is a map that is constant on α-cells. Though we
do not need to compute these α-cells, visualizing them—as in the sketch shown in Figure 7—
helps in understanding the various multivalued maps involved in this process. In Figure 7,
N = {A1, . . . , A9} and E = {A1, A2, A7, A8}. The blue and red landmarks are the nexuses of
the α-cells that make up N \ E and E, respectively.

In this example, the map FW restricted to the index pair can be described by the following
transition matrix:

(19) S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 1 1
0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Sij = 1 if and only if Aj ⊂ FW(int(Ai)); i.e., there is a witness of the landmark
associated with Ai whose image under the shift map is a witness of the landmark associated
with Aj . For example, FW (A6) = A2 ∪A3 ∪A8 ∪A9. Geometrically, this image is a disk and
is thus acyclic. Indeed, it is straightforward, if tedious, to verify from (19) that each cell maps
to an acyclic set under the witness map FW |N . Moreover, by (15), whenever x ∈ Ai ∩ Aj , it
has an image that is the intersection of the images of the individual cells. In this way, one can
compute the images under FW of the 12 one-dimensional simplices in the index pair. These
images, inferred from (19), can be verified to be acyclic when restricted to N . Finally only
one of the two-simplices in N remains in N under the map, namely FW (〈l3, l4, l9〉) = 〈l6, l7〉;
this image has no homology. Consequently, the map FW is acyclic on the index pair. This
condition is sufficient for our limited purpose here of verifying that f has a fixed point in
N . More generally, the acyclicity of the witness maps on the entire complex could easily be
automated, as is done for cubical complexes in the software package “CHomP” [Mis14].

Now, we want to represent this index pair with a corresponding simplicial complexW(N,E),
specifically, the witness complex associated with the landmarks {l1, . . . , l9}, corresponding to
α-cells {A1, . . . , A9}. The witness complexW(N,E), which is also the α-complex in this case,
is pictured in Figure 7. In order to compute the Conley index, we need a simplicial complex
that represents the quotient space N/E. Since the α-cells A1, A2, A7, and A8 make up the
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Figure 7. The witness complex (gray triangles, black lines, and dots) for the index pair (N,E) for the
landmarks from Figure 6. In this case, the witness complex is also the nerve of the α-cells (shown as truncated
red and blue spheres in the figure) since (14) is satisfied. Dashed lines show the analytical image of the simplicial
complex under the Hénon map (18). The black square is the fixed point.

exit set E, we make the identification

l1 ∼= l7 ∼= l2 ∼= l8 := E.

The resulting simplicial complex is shown in Figure 8. The homology of the simplicial complex
K(N,E) can easily be computed by hand in this example. In particular, the quotient space
N/E consists of a single connected component, so H0(N,E) = Z2. The quotient space has a
single, nonbounding cycle,

σ = 〈E, l3〉+ 〈l3, l4〉+ 〈l4, l5〉+ 〈l5, l6〉+ 〈l6, E〉,

so H1(N,E) = Z2.

Figure 8. The quotient simplicial complex N \E, where N is the simplicial complex shown in Figure 7 and
E = {l1, l2, l7, l8}.

We are now ready to compute the Conley index of the isolating neighborhood N \ E.
Specifically, we compute f∗ : H∗(N,E) → H∗(N,E). As described in the previous section,
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the homology of f is equivalent to the homology of ϕ, where ϕ is a chain selector for FW .
Therefore, in order to compute the Conley index, we need to find ϕ∗([σ]) := [ϕ(σ)].

The chain selector ϕ is defined inductively by first determining the image of each vertex
in K(N,E) (to be enclosed by FW) and then determining the image of each edge so that ϕ
commutes with the boundary operator. In addition, recall that FW on the quotient space
must be an enclosure of the index map fN . We begin with the initial assignment of vertices:

〈i〉 〈E〉 〈l3〉 〈l4〉 〈l5〉 〈l6〉 〈l9〉
ϕ0(〈li〉) 〈E〉 〈l6〉 〈l5〉 〈l3〉 〈l9〉 〈l6〉

To compute ϕ(σ), we need to find the images of the edges in σ as well. In order for ϕ to be a
chain selector for FW , the image of each edge, τ , must be a subset of FW(τ). Furthermore, ϕ
must commute with the boundary operator, so we need ϕ0◦∂1 = ∂1◦ϕ1. Those two conditions
yield the following edge assignments:

τ 〈E, l3〉 〈l3, l4〉 〈l4, l5〉 〈l5, l6〉 〈l6, E〉
ϕ1(τ) 〈E, l6〉 〈l6, l5〉 〈l5, l4〉+ 〈l4, l3〉 〈l3, l9〉 〈l9, E〉

It follows that ϕ∗([σ]) = [σ] (in Z2 homology). Since this map is not nilpotent, then it is not
in the shift equivalence class of [0] and thus the invariant set S = inv(N \E, f) �= ∅ [KMM04,
Thm. 10.91].

With this very simple example, we have illustrated that the witness complex and the
associated witness map can be used to compute the Conley index for a simple isolating neigh-
borhood. We plan in the future to apply this method to more complex and higher-dimensional
dynamics.

5. Conclusions and future work. Computational topology is a powerful way to analyze
time-series data from dynamical systems. Existing approaches to the approximation of a
dynamical system on algebraic objects construct multivalued maps from the time series using
cubical discretizations and then use those maps to compute the Conley indices for isolated
invariant sets of cubes. The approach described in this paper, by contrast, discretizes the
dynamics using a simplicial complex that is constructed from a witness-landmark relationship.
A natural discretization like this, whose cell geometry is derived from the data, is more
parsimonious and thus potentially more computationally efficient than a cubical complex. We
then use the temporal ordering of the data to construct a map on this simplicial witness
complex that we call the witness map. Under the conditions established in section 3.3, this
witness map gives an outer approximation of the dynamics and thus can be used to compute
the Conley index of isolated invariant sets in the data.

As a proof of concept, we applied our methods to data from the classic Hénon map and
located an isolating neighborhood for a fixed point of this dynamical system. There are many
other potential applications in the study of dynamical systems. Our approach could also
be used to find periodic orbits as well as connecting orbits between them—a strategy that
ultimately leads to rigorous verification of chaotic dynamics.

An important question that we leave open is “Can one develop rigorous computational
methods for multivalued maps based on simplicial complexes?” While interval arithmetic has
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been done for cubical complexes [DFT08], an approach based on the selection of an appropriate
value of ε to account for finite precision arithmetic might be appropriate.

In the future we also hope to explore the application of these techniques to scalar time-
series data sampled from a dynamical system. In this case, delay-coordinate embedding
[PCFS80, Tak81, SYC91] can be used to create a trajectory Γ of the form required by our
methods. Of course, noise becomes an issue in any consideration of experimental data. In the
case of bounded noise, it may be possible to turn our ε parameter to advantage—in the same
spirit as in [MMRS99], where the size of the cells in the multivalued map is chosen to account
for the experimental error.

Our techniques may also have significant impact in the numerical simulation of differential
equations. In [MM95], numerical integration, while keeping track of the magnitude of round-
off error, is used to prove that there is chaos present in the Lorenz equations [Lor63]. A
key step in this proof is showing that one can construct a multivalued map that is truly
an outer approximation of a given function f . Theorem 7 indicates that our techniques
are appropriate for these types of proofs. The computational efficiency that the data-driven
discretization confers upon the witness-map construction process should allow this approach
to scale well with dimension, so it is likely that constructions based on this map could be used
to generate computer-based proofs about high-dimensional differential equations. This would
be a significant advance in the field.

A large body of research in the field of computational topology has revolved around the
concept of persistence [DE95, EH08, Ghr08, Rob99]. The idea behind topological persistence
is that many computations in this field depend upon simple scale parameters. For example,
the α-complex of a point cloud depends upon the parameter α, the fuzzy witness complex
depends upon the parameter ε, etc. It makes sense, then, to perform these calculations over a
range of parameter values and to search for intervals where the topological properties remain
constant. This was the rationale for the choice of ε in section 4. A major area for future
research is the development of a theory of persistence in the context of Conley index theory.
We believe that contribution described in this paper is a significant step in this direction.

Appendix A. Simplicial complexes for discrete data. An abstract simplicial complex K
is a collection of finite, ordered subsets σ = 〈li0 , . . . , lik〉 in the power set, 2L, of a set of
vertices L such that if τ ≤ σ is a “face” of σ (it contains only vertices also in σ), then it is
also a simplex in K. The vertices, 〈li〉, are zero-simplices; edges, 〈li, lj〉, are one-simplices, etc.
The empty set is a face of every simplex. For points li ∈ R

n, the geometrical realization of a
simplex, |σ|, is the convex hull of its vertices. A geometrical simplicial complex is an abstract
complex K such that each intersection |σ| ∩ |τ | of simplices in K is a face of both [Ede95].

A simplicial complex L is a subcomplex of K if every simplex in L is in K. The k-skeleton
of K is the subcomplex containing all simplices of dimension k or less. Thus a one-skeleton is
the graph formed from the vertices and edges.

A clique (or flag) complex is the maximal complex with a given set of edges [Zom10] (called
a “lazy” complex by [dSC04]). Thus a clique complex is determined by its one-skeleton.

The nerve N(A) of a collection of sets A is an abstract simplicial complex constructed
from finite intersections. The vertices, li ∈ L, are labels for the elements Ai ∈ A, and a simplex
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σ = 〈l0, . . . , lk〉 is in the nerve if the k + 1 corresponding sets have nonempty intersection:

N(A) =
⎧⎨
⎩σ :

⋂
li∈σ

Ai �= ∅
⎫⎬
⎭ .

Thus each vertex in the nerve corresponds to the label li of the cell Ai, and each edge 〈li, lj〉
to a nonempty intersection Ai ∩ Aj , etc. It was shown by Borsuk and Weil that, in certain
cases, the nerve has the same homology or homotopy type as the geometrical realization of
the collection A.

Lemma 8 (nerve lemma [Bor48, Wei52, BT82, Hat02]). Let A be a collection of closed sets
such that every finite intersection between its members is either empty or contractible. Then
N(A) has the same homotopy type as |A|.

There are many natural ways of defining simplicial complexes for a finite point set L =
{l1, l2, . . . , l�} ⊂ R

n. If A = {Br(l) : l ∈ L} is the collection of closed radius-r balls (8) around
the set of landmarks, then the Čech complex, Cr(L), is the nerve of A. Since the balls are
convex subsets of Rn, the nerve lemma implies that C has the same homotopy type as |A|. The
sequence of Čech complexes is nested: Cr(L) ⊆ Cr′(L) when r < r′. A similar complex, the
Rips (or Vietoris–Rips) complex, Rr(L), consists of all simplices whose vertices are pairwise
within a distance r of each other:

Rr(L) = {σ : d(l, l′) ≤ r ∀ l, l′ ∈ σ}.
Since this complex is determined by its edges, it is a clique complex. Rips complexes are also
nested as r grows, and, moreover, they are interleaved with Čech complexes:

Rr′(L) ⊂ Cr(L) ⊂ R2r(L)

whenever r′ < r
√
2(n + 1)/n [Ghr08, dSG07]. This gives a relation between the persistent

homologies of the family of Rips complexes and the family of Čech complexes.
The Voronoi diagram V(L) = {Vl : l ∈ L} is the covering of Rn by the cells

Vl = {x ∈ R
n : d(x, l) ≤ d(x, l′)∀l′ ∈ L}.

Note that each Voronoi cell is convex, since it is the intersection of half-spaces, and two such
cells either are disjoint or meet on a portion of their boundaries. The associated simplicial
complex is the Delaunay complex D(L) = N(V(L)), the nerve of the Voronoi diagram. When
the points L are in “general position” (no more than n+ 1 points lie on any (n− 1)-sphere),
D(L) is a geometrical complex [Ede95]. Since this is generically true, general position can be
achieved by almost any, arbitrarily small, perturbation of the points in L. Thus it is common
to assume L is in general position.

The cells in the α-diagram are the intersection of the Voronoi cells with a closed ball of
radius α about a vertex:

Aα(L) = {Vl ∩Bα(l) : l ∈ L}.
The corresponding nerve is the α-complex, Kα(L) = N(Aα(L)). An alternative character-
ization is that σ ∈ Kα(L) if there exists a ball Br(x0) with r ≤ α that contains no vertices
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in its interior, int(Br(x0)) ∩ L = ∅, but for which σ ⊂ ∂Br(x0). The boundary of such a
ball is called a circumsphere for σ. For the Euclidean metric, each α-cell is convex, since it
is the intersection of convex sets. Thus the nerve lemma implies that |Kα(L)| is homotopy
equivalent to |Aα(L)|. Note that the α-complex is the intersection of the Čech complex and
the Delaunay complex,

Kα(L) = Cα(L) ∩ D(L),

so it is a subcomplex of each. Moreover, as α→∞, Kα(L)→ D(L).
A subset A ⊂ X, is a deformation retract of X if there exists a continuous map r : X×I →

X satisfying (7). The restriction ρ : X → A defined by ρ(·) = r(·, 1) is then a retraction of
X onto A. If A is a deformation retract of X, then it is homotopy equivalent to X. More
generally, two spaces A and B are homotopy equivalent if and only if there are a space X
and embeddings a : A → X and b : B → X such that both a(A) and b(B) are deformation
retracts of X [Hat02, Cor. O.21].

In fact the α-shape, |Kα(L)|, is a deformation retraction of the α-grid |Aα(L)| [Ede95].
There are two parts to Edelsbrunner’s result, and we give only a brief discussion of the ideas
in his paper.

Lemma 9. For any α ≥ 0 and any finite set of landmarks L ⊂ R
n in general position,

|Kα(L)| ⊂ |Aα(L)|.
This follows because when a collection of α-cells mutually intersect, i.e., when Aσ �= 0,

they must do so at a point x in the interior of |σ| (viewed as a subset of its spanning k-plane).
The proof proceeds by induction (it is easy for 0-simplices) and uses the facts that the union
S(σ) = ∪l∈σAl is star-convex, relative to x, and that |σ| is itself convex. The implication is
that |σ| ⊂ S(σ) for each simplex in Kα(L). The result is used to construct the deformation
retract.

Lemma 10. For any α ≥ 0 and any finite set of landmarks L ⊂ R
n in general position,

|Kα(L)| is a deformation retract of |Aα(L)|.
The construction of a deformation retract is based on planes that are orthogonal to points

on simplices that are on the boundary of |Kα(L)| (for points in the interior, the deformation
is the identity map). If σ is a k-simplex, then each point in its interior is the intersection of
the k-plane containing |σ| and the (n−k)-plane that is its orthogonal complement. Convexity
implies that these families of orthogonal (n−k)-planes cover |Aα(L)|\|Kα(L)|, and each point
in this set lies in exactly one such plane. The deformation is defined as linear flow from the
boundary of |Aα(L)| to the boundary of |Kα(L)|. A consequence of this construction is that
the deformation maintains membership in each α-cell: r(Ai, t) ⊂ Ai. This last property is a
hypothesis for Lemma 2.

Appendix B. Discrete Conley index. A key tool in computational topology is the Conley
index [Con78], which can be expressed in terms of the algebraic topology of a pair of sets
that are acted upon by a map f . Given the Conley index of such a pair, one can sometimes
prove the existence of fixed points, periodic orbits, and equivalence to shift dynamics for the
dynamics of an invariant set. In this appendix we briefly recall the definition of the index and
some related concepts; for more details see [Eas98, MM02, KMM04].

Given a homeomorphism f : X → X, a set Λ is invariant if f(Λ) = Λ. The maximal
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invariant set contained in a set K is

inv(K) = {x ∈ K : f t(x) ∈ K ∀ t ∈ Z},
which, of course, could be empty. A compact set K is an isolating neighborhood if the subset
that remains in K for all time is contained in its interior: inv(K) ⊂ int(K). Similarly, a set
S is an isolated invariant set of f when it is the maximal invariant set in the interior of some
isolating neighborhood K: S = inv(K) ⊂ int(K).

The computation of the Conley index relies on the construction of an index pair that gives
rise to an isolating neighborhood [MM02].

Definition (index pair). A pair of compact sets P = (N,E) with E ⊂ N ⊂ X is called an
index pair for S = inv(N \E) relative to f if it satisfies the following three properties:

• cl(N \ E) is an isolating neighborhood.
• f(E) ∩N ⊆ E.
• f(N \ E) ⊂ N .

These three properties are illustrated in Figure 9. The first states that the set K =
cl(N \ E) is an isolating neighborhood that isolates some (possibly empty) invariant set S.
The second property implies that once a trajectory enters E, it will not return to K before
leaving the index pair entirely. The third property states that E contains the exit set of N ;
that is, the images of points not in E must remain in N . It is possible to show that every
isolated invariant set S has an index pair [FR00].

Figure 9. An index pair N = K ∪ E (a square) and E (two rectangles). The image of E either leaves N
or remains in E. For this picture the isolating neighborhood K is guaranteed to contain a fixed point. A simple
map with this index pair is f(x, y) = (ax, by) with a > 1 > b > 0.

For any index pair P = (N,E) there is a quotient space N/E with the equivalence relation
[x] = [y] if x, y ∈ E. A continuous index map fP can be defined on N/E by

fP ([x]) =

{
f(x) if x, f(x) ∈ N \E,
[E] otherwise.

A complication is that two index pairs P , P ′ for the same isolated invariant set can have
topologically distinct quotient spaces and index maps that are not homotopic. However, any
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such index maps induce shift equivalent maps on the homology group H∗(N,E) of N relative
to E. Shift equivalence is a less rigid version of conjugacy for noninvertible maps that was
introduced by Robert Williams and used in the definition of the discrete Conley index by
Franks and Richeson [FR00].

Definition (shift equivalence). A pair of endomorphisms f : X → X and g : Y → Y are
shift equivalent if there exist continuous maps h : X → Y and k : Y → X such that h◦f = g◦h
and f ◦ k = k ◦ g, and there exists an m ∈ N such that h ◦ k = gm and k ◦ h = fm.

Note that if f and g are homeomorphisms, they are shift equivalent if and only if they are
conjugate, with the conjugacy defined by c = h ◦ f−m = g−m ◦ h, and c−1 = k.

The point is that for any two index pairs (N,E), (N ′, E′) that isolate the same invariant
set, the maps on homology fN∗ and fN ′∗ are shift equivalent [FR00]. This shift equivalence
class, [fP∗]s, is the discrete homology Conley index Con(S, f) of the invariant set S isolated
by K.

One of the fundamental advantages of the Conley index is its structural stability; for
example, if K is an isolating neighborhood for f , then there is ε > 0 such that K is also an
isolating neighborhood for f̃ , whenever ‖f − f̃‖∞ < ε. Moreover, so long as an invariant set
remains isolated by K, its Conley index does not change [MM02].

The simplest implication of a nontrivial Conley index is the Wazewski property : whenever
Con(S, f) �= [0], then S �= ∅ [KMM04, Thm. 10.91]. In addition, periodic orbits are guaranteed
when the “Lefschetz number” is nonzero [KMM04, Thm. 10.46], and (for C∞ maps) the
topological entropy is positive whenever the shift equivalence class of fP has spectral radius
greater than one [Bak02].

Appendix C. Computing the Conley index. In order to use the Conley index to obtain
information about a map f , we start by using a multivalued map FA or FW to locate isolating
neighborhoods for f . Since the construction of the CMM is analogous to the cubical map
of [KMM04], we borrow the presentation as well as relevant theorems and algorithms from
that work and from [DFT08]. In most cases, the proofs of the theorems in this section are
identical to those in the original citations if one simply substitutes the concept of a grid-cell
for that of a cube. A thorough treatment of these results—with respect to any grid satisfying
the first definition in section 2.1—can be found in [Mro99]. Our goal is to move beyond the
cubical complexes used in previous work and devise a method to efficiently build an SMM
that contains the same information as the CMM.

We begin by defining trajectories and invariant sets for the multivalued map, following
[DJM04, DFT08].

Definition (combinatorial trajectory). A combinatorial trajectory of FA through A ∈ A is a
bi-infinite sequence of cells, ΓA = (. . . , A(−1), A(0), A(1), . . .), such that A(0) = A and A(n+1) ⊆
FA(A(n)) for all n ∈ Z.

Definition (combinatorial invariance). Given a CMM FA : |A| ⇒ |A|, the combinatorial
invariant part of N ⊂ A is defined by

inv(N,FA) := {A ∈ A : ∃ a trajectory ΓA for which A(n) ⊂ N for all n ∈ Z}.

The following algorithm can be used to locate the combinatorial invariant part of a compact
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set N .
Algorithm 11. invariantPart(N,FA)

S ← N
repeat
S′ ← S
S ← FA(S) ∩ S ∩ F−1

A (S)
until S = S′

return S

It is proved in [KMM04, Thm. 10.83]—in the context of cubical sets—that if N is finite,
this algorithm terminates and returns inv(N,FA) (which could be empty). The extension to
the cellular case is straightforward.

Associated with this notion of invariance, there is a property of isolation, which is defined
using the following definition.

Definition (combinatorial neighborhood). The combinatorial neighborhood of a set S ⊂ A
is

o(S) := {B ∈ A : B ∩ S �= ∅}.

More plainly, the combinatorial neighborhood consists of S and all of the cells that touch
its boundary. In order for a combinatorial invariant set to be isolated, it must be the invariant
set of some neighborhood.

Definition (combinatorial isolating neighborhood). A set K ⊂ A is a combinatorial isolating
neighborhood if

o(inv(K,FA)) ⊆ K.

Given a guess, K, for such a neighborhood, we might be able to find an isolating neigh-
borhood by growing it: if K ′ = inv(o(K), FA) ⊂ K, then K is isolating; otherwise we replace
K by K ′ and repeat. For example, in section 4, where we are looking for a fixed point, we use
the cell containing a nearly recurrent point as the initial guess. This leads to the algorithm
of [DJM04, DFT08].

Algorithm 12. growIsolating(K,FA)
while inv(o(K), FA) �⊂ K do
K ← inv(o(K), FA)
if K ∩ ∂|A| �= ∅ then

return ∅
end if

end while
return K

If growIsolating is called with a combinatorial set K ⊂ A and a CMM FA, then it returns a
combinatorial isolating neighborhood for FA—or else it fails when K intersects the boundary
of the grid A. A sufficient condition for this not to occur is that |A| is itself an isolating
neighborhood because then each cell that touches the boundary of |A| has a neighborhood
whose invariant part is contained in |A|.

An important point is that when K is isolating for FA, then under certain conditions, |K|
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is isolating for any continuous selector f of FA.
Theorem 13. Let FA : |A| ⇒ |A| be a CMM for f . Then if K ⊂ A is a combinatorial

isolating neighborhood for FA, |K| is an isolating neighborhood for f .
This is essentially [KMM04, Thm. 10.87], generalized to the cellular case.
The computation of the Conley index begins with an isolating neighborhood K of a CMM,

with the goal of finding a pair of sets (N,E) that satisfy the definition of an index pair. We
compute these using the following algorithm.

Algorithm 14. indexPair(K,FA)
S ← inv(K,FA)
C ← o(S) \ S
E ← FA(S) ∩ C
repeat
E′ ← E
E ← FA(E) ∩ C ∩ E′

until E = E′

N ← S ∪ E
return (N,E)

This is similar to Algorithm 10.86 in [KMM04] which was stated for cubical sets. It was
proven there that if this algorithm is called with a combinatorial isolating neighborhood K
and an outer approximation FA of f , then the geometric realization of the pair it returns is
an index pair for f . This proof can be adapted to the cellular map situation.

Given an index pair (|N |, |E|) for f , the computation of the discrete Conley index reduces
to finding a representative of the shift equivalence class [fP∗]s and its action on the relative
homology groups, H∗(|N |, |E|).

Appendix D. Computational complexity. To analyze the computational complexity of
the approach proposed in this paper and compare it to that of the cubical grid version of
[KMM04], one must consider both run time and memory use.

In the cubical grid case, all of the cells that are occupied by data points must be processed
in order to compute the homology. The run time costs of this have two components. Deter-
mining whether an individual data point is in a particular cell in a d-dimensional cubical grid
is a matter of evaluating 2d inequalities: the computational cost is O(d). Constructing the
multivalued map requires checking the images of the 2d grid squares that touch the corner
points of the occupied cells and iteratively expanding that set until there are no empty inter-
sections [MMRS99]. This iterative expansion step can be a significant computational expense.
Finding an isolated invariant set can require iteratively checking the forward and backward
images of the neighboring cells in the grid (cf. Algorithm 12). This too can require significant
computational effort.

The witness-complex approach sidesteps all of this complexity in two ways: first by using
a subset of the data, and second by building a simplicial complex from those landmarks. The
computational costs of this approach are balanced differently than in the cubical grid case:
building the complex is harder, but using it is easier. In particular, constructing a witness
complex involves calculating the distances between every point and every landmark, which
has cost O(� log T ) if there are T points and � landmarks (using, e.g., a kd-tree algorithm).
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But this computation parallelizes beautifully; moreover, � � T in practice—indeed, that is
the point of the “coarsening” inherent in the witness complex. Moreover, the dimension of
each simplex is only high enough to cover the corresponding part of the invariant set, whereas
all of the grid elements in the cubical case necessarily have the dimension of the ambient
space. This means that Algorithm 12 has not only fewer cells to process in the simplicial
case but also far fewer neighbors to check. For all of these reasons, the overall complexity in
computing the homology of a witness complex is substantially lower than that of the cubical
grid case. Note, too, that the cellular witness map is automatically an outer approximation
if the conditions of Theorem 7 are satisfied.

The memory costs of the two approaches also arise in different ways. Informally speaking,
in order to use a cubical grid to capture the dynamics with the same fidelity as a witness
complex constructed from landmarks whose minimum spacing is β, one would need to use grid
elements of size β/

√
d, where d is the dimension of the ambient space. The number of cells

in this grid would be larger than the number of d-dimensional simplices in the corresponding
witness complex. This effect, which holds even if one disregards empty grid cells, may not be
significant in low dimensions and small data sets but can become an issue if the data are large
and/or high-dimensional. Moreover, if the landmarks are spaced uniformly in time along the
trajectory, that spacing—and the geometry of the witness complex—naturally adapts to the
dynamics. Cubical grids do not share this advantageous property.

Another important difference arises in storing the complex in the computer’s memory.
There are a number of extremely efficient ways to store information about which cells of a
cubical grid are occupied by data points. The free-form nature of simplices would appear
to make storing information about them (points, edges, faces, etc.) more of a challenge, but
that cost can be mitigated by using creative algorithms. Note, for instance, that if one stores
the results of the witness-landmark calculations mentioned above in the form of a linked list
whose tth element contains a list of the landmarks that are witnessed by the tth data point,
sorted in increasing order by distance, that data structure contains all of the information
one needs to describe the witness complex. Algorithmic creativity can lower the expense of
working with that data structure; we are currently investigating an approach that stores the
witness relationships in bitmap data structures and uses them as “masks” (together with
logical operations) to find landmarks that are shared between different sets of witnesses. And
the clique assumption made here can be used to further streamline this search, since all one
needs to consider is the edges.

While we have not provided a test of these claims about computational efficiency on a
large set of high-dimensional data in this paper, we plan to do so in future work.

Finally, we would like to note that while building α-complexes is a computationally de-
manding task in high dimensions, we never actually construct an α-complex. The only roles
of that construct in this work are as a vehicle for extending the proofs of [KMM04] to the
simplicial case.
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[EM92] H. Edelsbrunner and E.P. Mücke, Three-dimensional alpha shapes, in Proceedings of the 1992
Workshop on Volume Visualization, ACM, New York, 1992, pp. 75–82.

[FBF77] J.H. Friedman, J.L. Bentley, and R.A. Finkel, An algorithm for finding best matches in
logarithmic expected time, ACM Trans. Math. Software, 3 (1977), pp. 209–226.

[FR00] J. Franks and D. Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc.,
352 (2000), pp. 3305–3322.

[Ghr08] R. Ghrist, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc. (N.S.), 45 (2008),
pp. 61–75.

[Hat02] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, UK, 2002.
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