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Abstract

This paper describes an implemented computer program called pret that automates
the process of system identi�cation: given hypotheses, observations, and speci�cations,
it constructs an ordinary di�erential equation model of a target system with no other
inputs or intervention from its user. The core of the program is a set of traditional system
identi�cation (SID) methods. A layer of arti�cial intelligence (AI) techniques built around
this core automates the high-level stages of the identi�cation process that are normally
performed by a human expert. The AI layer accomplishes this by selecting and applying
appropriate methods from the SID library and performing qualitative, symbolic, algebraic,
and geometric reasoning on the user's inputs. For each supported domain (e.g., mechanics),
the program uses a few powerful encoded rules (e.g., �F = 0) to combine hypotheses into
models. A custom logic engine checks models against observations, using a set of encoded
domain-independent mathematical rules to infer facts about both, modulo the resolution
inherent in the speci�cations, and then searching for contradictions. The design of the next
generation of this program is also described in this paper. In it, discrepancies between sets
of facts will be used to guide the removal of unnecessary terms from a model. Power-series
techniques will be exploited to synthesize new terms from scratch if the user's hypotheses
are inadequate, and sensors and actuators will allow the tool to take an input-output

approach to modeling real physical systems.

1 Introduction

Traditional system identi�cation addresses the task of inferring a mathematical model of
a system from observations of that system. A controls engineer might perform this task,
in its most basic form, by choosing a power series and matching its coe�cients against the
numerical observations via some sort of regression[40]. This paper describes a computer
program called pret that automates the system identi�cation process, at several levels, by
building an arti�cial intelligence (AI) layer on top of a set of traditional system identi�cation
techniques. This AI layer automates the high-level stages of the identi�cation process that

1This research was supported by two NSF grants: National Young Investigator award #CCR-9357740
and #MIP-9403223
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are normally performed by a human expert. Qualitative, symbolic, and geometric reasoning
are used to perform structural identi�cation | the choice of the power series made by the
engineer in the example above. This layer also automates another subtle and di�cult part
of the process: the choice and application of the appropriate lower-level method for each
stage of the process.

pret works with ordinary di�erential equation (ODE) models, linear or nonlinear, in
one variable or many. Its implementation is a hybridization of traditional numerical analysis
methods, such as simulation and nonlinear regression, with logic programming, computer
vision techniques, and qualitative reasoning. The input consists of speci�c information
about an individual system, in three forms:

� the user's hypotheses about the physics involved

� observations, interpreted and described by the user, symbolically or graphically, in
varying formats and degrees of precision

� physical measurements made directly and automatically on the system

To construct an ODE model from this information, pret combines powerful mathematical
formalisms, such as the link between the divergence of an ODE and the friction of the system
that it describes, with domain-speci�c notions | such as force balances in mechanical
systems | to allow the types of \custom-generated approximations[53]" that are lacking in
existing AI modeling programs. Two sets of rules, both of which may easily be changed or
augmented by the user, play very di�erent roles in the model-building task. Domain-speci�c
rules are used to combine hypotheses into models | a nontrivial task in a system with more
than one degree of freedom, or a system in which physical e�ects couple to one another |
while general rules about ODE properties are used by a custom deduction engine to infer
facts from models and from observations. Both model- and observation-based inferences
are governed by speci�cations, which prescribe the resolution for quantities of interest. Any
contradictions between the set of facts inferred from the observations and the set of facts
inferred from a candidate model cause that model to be ruled out, in which case pret
tries a new combination of hypotheses. The �rst noncontradictory model in this sequence
is returned as the answer.

Acting upon simple mechanical examples like the parametrically driven pendulum, the
current version of the program can e�ciently perform these tasks and construct accurate
ODE models. Of course, a model of a driven pendulum is not the research goal here
| physicists and engineers have spent centuries constructing and re�ning such models.
This is simply an example | one that was chosen because it is instantly recognizable and
intuitively obvious to the reader. In spite of its simplicity, this example is interesting from
an AI standpoint, as it demonstrates e�ective automated reasoning, even if only on the
level performed by a 17th-century physicist. One of the ultimate goals of this research is
to produce a tool that can construct a model of a black-box system using only information
from its ports. Textbook examples like the pendulum are critical to such an endeavor,
as one must, for obvious reasons, verify the tool's performance on such exercises before
trusting the results that it produces when presented with di�cult open problems.
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The following subsection is a brief review of AI and AI-speci�c perspectives on modeling
research, coupled with a description of where this work �ts within that context. The next
section presents an overview of pret's function, illustrates its input syntax using a simple
example, and discusses some of the more important implications of that syntax. Section 3
outlines how the program uses that information, together with its encoded knowledge, to
build an ODE model and closes with some discussion of related work, both in AI and
other �elds. The �nal section wraps up the example, gives a status report, discusses future
directions, and summarizes some of the most important issues of the research.

1.1 Arti�cial Intelligence and Modeling

Research in AI has two major goals: the understanding of the mechanisms that make
human intelligence possible[15] and the construction of intelligent artifacts[28]. Both ends
of this spectrum | analytic and synthetic AI | depend on each other: a theory of human
intelligence may be veri�ed by the intelligent behavior of an artifact that instantiates the
theory. Conversely, an engineer who builds an intelligent system may obtain useful ideas
by observing human experts.

Intelligent behavior requires that the world knowledge that is relevant to the task at
hand be available, along with the means to reason about it. The construction of an intelli-
gent computer program requires a framework in which both knowledge and reasoning can
be formalized. This formal system should be small and neat enough to be understandable
and easy to maintain, and yet powerful enough to allow its users to think and formulate
in the language and concepts of the application domain. An adequate representation for-
malism allows a natural formulation of the problem that is to be solved. Therefore, AI
programmers typically try to represent knowledge declaratively rather than operationally:
one formulates facts rather than instructions. Ideally, the declarative representation of the
problem is executable. That means, it is not just part of the intelligent artifact but it is
the artifact.

Modeling physical systems is an ideal application for these ideas and techniques. One of
the most powerful analysis tools in existence | and often one of the most di�cult to create
| is a good model. Expert model-builders typically construct hierarchies of successively
subtler representations that capture the salient features of a physical system, each incor-
porating more physics than the last. At each level in the hierarchy, the modeler assesses
what properties and perspectives are important and uses approximations and abstractions
to focus the model accordingly. The subtlety of the reasoning skills involved in this process,
together with the intricacy of the interplay between them, has led many of its practitioners
to classify modeling as \intuitive" and \an art[41]." Any tool that e�ectively automated
a coherent and useful part of this art would be of obvious practical importance in science
and engineering: as a corroborator of existing models and designs, as a medium within
which to instruct newcomers, and as an intelligent assistant, whose aid allows more time
and creative thought to be devoted to other demanding tasks.

The computer program pret described in this paper is exactly such an automatic
modeler. This work falls on the \intelligent artifact" end of the AI spectrum | its focus
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is not to construct a cognitive model of the thought process of a physicist or an engineer
when he or she builds a model of a physical system, but rather to build a useful tool that
obtains the same result as a human expert would. However, as outlined above, learning
from a physicist's techniques is a fruitful approach.

pret's techniques fall mostly in the category of qualitative physics (QP) or quali-

tative reasoning (QR)[7, 9, 21, 25, 54]. Like AI in general, qualitative reasoning about
physics spans a whole spectrum, from modeling how humans reason about their physical
environment[33] to engineering artifacts that can reason about physics[49]. Its main goals
are the prediction of behavior, analysis, design, control, monitoring, and fault diagnosis.
Many QR programs, particularly the ones that perform monitoring[23] or diagnosis[20],
infer the behavior of a physical system from its structure or vice versa[16]. What distin-
guishes QP from other formalisms that represent physics knowledge, such as di�erential
equations, is the abstraction to a qualitative level. For example, so-called landmarks divide
the continuum of real numbers into a �nite number of intervals. Typically, landmarks are
critical values of quantities that describe the physical system. The behavior of the physical
system | the progression of the values of relevant quantities | is described as a discrete
sequence of states and state transitions. States describe situations, such as \x = 0" or \y
is positive" or \z = l1" where l1 is a landmark. State transitions describe changing values,
e.g., \x is monotonically increasing."

Many well-developed formalisms to represent and reason about mathematical, quantita-
tive, and numerical knowledge exist. The goal of QP, however, is to formalize and automate
conceptual, abstract, and qualitative reasoning in the physics domain. This qualitative kind
of knowledge and reasoning requires a completely di�erent set of primitives, such as the
states and state transitions described above, or the facts about ordinary di�erential equa-
tions that are pret's primitives. Adequate combinations of well-chosen primitives are a
primary research goal in problems like this, as they enable a computer program to handle
unforeseen situations. The ability to rearrange thought primitives in order to solve new
problems is a crucial part of what makes a good scientist or engineer | or an intelligent
artifact that performs the same tasks.

In general,modeling[24, 38] underlies most of the approaches to reasoning about physical
systems. Strictly speaking, every formalization of the properties of a physical system
constitutes a model of the physical system. The spectrum ranges from models that use
a language that is very close to the physics of the system to models that use a language
that is well-suited to describe the systemmathematically. An example of the physics end of
this spectrum might be formal instructions how to build a pendulum. These instructions
would use terms like rod, bob, and bearing. The other extreme might be di�erential
equations that use terms like mg sin �. In any case, a modeler | human or not | builds
the model out of simple components, assuming that the overall behavior follows from the
behavior of the components and their interaction. Examples of QR modeling systems
include the ENVISION system[18], which reasons about the components of the system
and their interaction, as well as QPT (Qualitative Process Theory)[26] and its successor
QPE (Qualitative Process Engine)[27], which emphasize the notion of causality. This is
a very useful approach if the goal of the program is to explain certain phenomena in
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physical terms[34]. QSIM (Qualitative SIMulation)[35] simulates the behavior of a physical
system qualitatively. The description of the physical system, called a qualitative di�erential
equation (QDE), uses mathematical language rather than terms from physics, namely the
progression of relevant quantities (functions) and constraints on relations between these
functions. The following example, drawn directly from a recent and thorough text on this
topic[37], is a QDE fragment that relates the amounts of 
uids in two connected containers,
A and B, and the 
ow rates in the pipe between them, while constraining the total amount
of 
uid to remain constant:

...

((minus flowAB -flowAB))

((d/dt amtB flowAB))

((d/dt amtA -flowAB))

((add amtA amtB total))

((constant total))

...

From this information and some initial conditions2, QSIM generates qualitative descriptions
of every possible outcome, which it presents on graphs whose breakpoints are the landmarks
described above. One current thrust of research by this group targets the integration of
quantitative and qualitative information[6, 55]. Some other useful QR references are: [42] on
varying resolution, [45] on order-of-magnitude reasoning, and [51] on mathematical aspects.
A few useful general AI references are [1, 57].

On the spectrum from physics language to mathematics language, QPT resides on the
physics end, QSIM on the mathematics end, and pret somewhere in between. Its inputs
| primarily observations and hypotheses about the physical system | are partially in the
terms of physics. This approach allows the user to state the problem in his or her domain
language. Also, pret's reasoning uses concepts from physics, allowing it to rule out bad
candidate models by high-level abstract reasoning. The rules about how hypotheses are
combined into ODEs re
ect laws of physics, such as F = ma. The decision about what to
try next if some candidate model fails will also use physics concepts, e.g, \try quadratic
friction instead of linear friction." However, pret's output | the model of the physical
system that it constructs | is purely mathematical: an ODE.

In summary, pret makes heavy use of QR's notions of landmarks, qualitative vocabu-
lary, and qualitative behavior. As do most QR systems, it exploits symbolic reasoning and
reason-maintenance techniques. The structure of the physical system is described by no-
tions like point, loop, etc., but there is no elaborate scenario description (e.g., a description
that uses language that is highly speci�c to, say, 
uids in containers). The program does
not reason about causal relationships between behaviors of physical system components,
nor does it try to explain observed phenomena. pret takes a minimalist approach: �nd a
simple model that is consistent with the observed behavior of the physical system.

2plus a few other details about variable names, ranges, and so on
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Figure 1: Structure and application

2 An Overview and an Example

The pret modeling program, represented by the right-hand block in �gure 1, constructs
an ODE model of a target system based on information entered by a user; if the model is
to be based on direct observations of a physical system, the program will obtain additional
information via sensors, actuators, a hardware I/O channel, and data acquisition software.
The output is an ordinary di�erential equation, of the form f(~x; t) = 0, whose behavior
matches the observations to within the prescribed resolution. pret builds this model in
several stages, �rst using the encoded domain rules to combine hypotheses into candidate
models and then checking those models against the observations modulo the precision
inherent in the speci�cations. This check is performed by a �rst-order logic system that
uses the current status and a set of encoded ODE rules to infer facts from the models
and from the physical system. Any con
ict between these two sets of facts, as mentioned
in the previous section, is grounds for dismissal of the model under examination. The
current version of the program implements this general framework, incorporating a basic
set of domain and ODE rules that allow it to build models of simple mechanical systems.
It is written in Scheme[46], uses symbolic algebra facilities from the commercial package
Maple[13], calls upon the public-domain package ODRPACK[10] for parameter estimation,
and will soon incorporate qualitative simulation[35]. Ultimately, pret will re�ne and
simplify models using a collection of techniques that are outlined in the later sections of
this paper to add and remove terms from the ODE.

Figure 2 shows an example of how one might instruct pret to construct a model of the
damped pendulum. In this example, the user �rst sets up the problem, then hypothesizes
four di�erent force terms, makes �ve observations about the bob angle �, and �nally speci�es
resolutions and ranges for two important variables. It is important to note, as alluded to
in the introduction, that this simple example is not by any means a true test of pret's
power.

The initial problem setup requires several steps. The �rst line of the find-model call
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(find-model

(domain mechanics)

(state-variables <theta>)

(point-coordinate <theta>)

(hypotheses

(<force> (* (constant A1) (deriv (deriv <theta>))))

(<force> (* (constant A2) (sin <theta>)))

(<force> (* (constant A3) (deriv <theta>)))

(<force> (* (constant A4) (square (deriv <theta>)))))

(observations

(autonomous <theta>)

(linear (<time> <theta>) (1 0) (range <theta> -.05 .05))

(damped-oscillation <theta>)

(asymptote (eqn 0)

(at <time> *infinity*)

(range <theta> 0 *infinity*))

(numeric (<time> <theta>) ((0 .1234) (.1 .1003) ... )))

(specifications

(resolution <time> absolute 1e-6 (0 120))

(resolution <theta> absolute 1e-3 (0 (* 2 pi)))))

Figure 2: Instructing pret to model the damped pendulum
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speci�es the domain and causes the program to instantiate the associated rules | here,
the force-balance rule (point-sum <force> 0). The next two lines identify <theta> as
a state variable that is a coordinate associated with a point (the bob). Other types
of coordinates | e.g., 
ow coordinates like currents in a circuit or bulk coordinates that
quantify turbulence in a volume of liquid | will be necessary in other domains.

Identifying and classifying the critical state variables of a system is a non-trivial task.
We do not plan to automate this process, but we do o�er the user some assistance.
pret works most e�ciently if all of the important state variables are identi�ed in the
state-variables statement, but it will ultimately incorporate power-series techniques,
addressed in section 3.4, that will allow it to construct a model, in some cases, even if the

user omits important state variables. Redundant state variables | ones that play no role
in the model | increase the size of the search space but otherwise present no problems.

Hypotheses are ODE fragments expressed in terms of elements of the observation vector
(~x in �gure 1) | which are typically system state variables3 | and special keywords that
provide the link to the domain and ODE rules. In this example, the keyword <force> is the
link to the rule (point-sum <force> 0)4. The four <force> hypotheses shown in �gure 2
are the obvious ones found in any freshman mechanics text: F = ma, circular-to-linear
projection, and two simple forms of friction. A pret call on an electronics application would
use the keywords <current> and <voltage> and the associated domain rules (point-sum
<current> 0) and (loop-sum <voltage> 0). The <time> keyword is common to all
domains. Manipulation of these constructs places some subtle and interesting requirements
on both the internal and external representations of coordinates, as the program must
be able to infer connections, loops, cutsets, etc., from the information in the input call.
Note that the concepts of loop and point sums are not only appropriate for these examples,
but also generalizable well beyond mechanics or electronics. Amsterdam[4] uses an energy-
based modeling approach that generalizes these notions even further, into e�ort coordinates
and 
ow coordinates. We have chosen a more-speci�c semantics in order to make the
syntax more comprehensible to the domain experts who will be pret's end users. Finally,
extending the program to other paradigms (e.g., volume-change, etc.) is easy: one need
only think of a new keyword and write a new rule that uses it, which is typically a matter
of two or three lines of Scheme code, as shown in section 3.2.

Multiple hypotheses about a single e�ect may | and should | exist; the program will
automatically determine which one(s) are appropriate. Some other modeling programs, e.g.,
Forbus and Falkenhainer's compositional modeling[24], de�ne groupings of terms in such
situations, such as a set of hypotheses about friction. Mutual exclusivity constraints are
then imposed within each group, allowing the program to choose only one of the members,
and thereby greatly reducing the complexity of the process. We have chosen not to follow
this paradigm, for two reasons: (1) to minimize the restrictions on the models that the
program can choose and (2) to minimize the high-level conceptual processing required of

3Not all state variables may be observable; this issue is discussed in section 3.5.
4A body-centered inertial reference frame is assumed here, together with coordinates that follow the

formulation of classical mechanics[31], which assigns one coordinate to each degree of freedom, thereby
allowing all equations to be written without vectors.
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the user. We do allow users to specify that two terms must appear together | one simply
lists both in a single hypothesis. This also brings up another interesting issue: the presence
of a particular term can carry implications about others (e.g., centripetal and coriolis forces,
which have distinctive forms and which appear together in rotating frames). These cases,
which depend intimately on domain knowledge, will be exploited in the model re�nement
process that is the next step in this research project.

An observation describes the behavior of a single element of the observation vector, ei-
ther in the time domain or in any state-space projection5. Unlike hypotheses, observations
may not con
ict. They have two potential sources | the user and the sensors | and may
be descriptive, graphical, or numeric. The former use special descriptive observation key-

words, the second are sketches drawn on a computer screen with a mouse, and the third sim-
ply specify data points. Descriptive observation keywords, such as damped-oscillation,
linear with [slope, intercept], chaotic, autonomous, etc., resemble terms in qual-
itative physics(QP)[54]. These terms play a key role in pret's reasoning process: the logic
engine uses the encoded ODE rules to infer facts from them in order to corroborate or
rule out candidate models. For example, if the system is observed to be autonomous, the
logic system infers that the variable <time> cannot appear explicitly in the ODE model.
The processing of numeric observations, on the other hand, proceeds at a much lower rea-
soning level, forcing point-by-point comparisons with numerical integrations of ODEs. We
have added a qualitative layer on top of this that uses curve �tting, asymptote recognition,
phase-portrait analysis techniques drawn from computer vision[12], etc., to distill high-level
descriptive information out of the raw numerical data. This information is then used much
as descriptive observation keywords are, greatly raising the level of the reasoning process.
The user's sketched graphical observations will undergo exactly the same type of prepro-
cessing and distillation. Observations from the hardware I/O channel will be treated much
like numeric observations, but at a higher con�dence level. Finally, observations of any
form must encode the range in which they are valid; the endpoints of these ranges are akin
to QP's landmarks.

Observations guide the modeling process in a fundamental way. A model constructed
by a human expert matches | minimally | a particular set of observations; the model
builder does no more work than necessary to e�ect the match, and does not try to anticipate
extensions or further developments until forced to do so by model failure or requirement
escalation. The automatic modeler described here does exactly the same thing, expending
the least possible e�ort to corroborate models and observations by reasoning at the highest
possible level at all times and using the most qualitative form of the information involved.

These issues have important implications for the treatment of the unknown coe�cients
A1, A2, etc. in �gure 2 | ones that are closely related to the issues addressed in constraint

logic[14]. A descriptive observation often places only qualitative restrictions or bounds on
these values, whereas matching a model against a numeric observation usually requires
computation of exact coe�cient values out to the number of signi�cant �gures dictated
by the speci�cations. Moreover, a single observation, qualitative or quantitative, can con-
tain information about many di�erent variables. Such an observation would signi�cantly

5
pret will perform no frequency-domain reasoning.
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sharpen the model by forcing the evaluation of several coe�cients in several di�erent parts
of the di�erential equation. For all these reasons, there is no good way to determine in
advance how the number and type of undetermined coe�cients, state variables, hypotheses,
and observations will a�ect the form of the model. A �nal, more-obvious implication of the
role of observations in the modeling process is that neither a program nor a human expert
can be expected to construct a model of a system if no observations about that system are
given.

A speci�cation concerns any function of any number of observation vector elements;
it prescribes the range of interest and the resolution limits for that quantity and speci�es
whether the latter is absolute or relative. The resolution statements in �gure 2, for
instance, instruct the modeler to impose microsecond and milliradian resolution over 120
seconds of system evolution. A successful model must match all observations to within
these bounds, so they strongly in
uence many forms of processing in all stages of the
program. This has a variety of implications, the most interesting of which stem from
the translation between quantitative and qualitative representations; a nanosecond glitch,
for instance, should be invisible in a millisecond-resolution run. These issues have been
discussed extensively in the QP literature[8] and are re
ected in obvious ways throughout
pret's code. Both range and resolution e�ects can alter behavior classi�cation: a tiny
chaotic attractor can be checked through as a �xed point, and a globally nonlinear ODE
can be returned as the model for a linear system | if it has a linear region of the right
width in the right place. This is not an unwelcome side e�ect of �nite resolution. It is
an intentional and useful by-product of the abstraction level of the modeling process. It
is important to note that speci�cations implicitly govern the level of abstraction that the
modeler enforces: sharpening the resolution will typically force the modeler to account for
lower-level e�ects and add terms to the ODE, given a �xed set of observations.

This set of inputs was consciously chosen to mimic the information that an expert
designer uses when he or she constructs a model. The intention was to make pret interface
smoothly with human skills, reasoning, and communication patterns. These choices, and
their justi�cation, are speci�c to this particular project. The debate about whether or not
computer problem-solving processes should in general emulate their human equivalents has
a long and somewhat contentious history, to which we plan no contribution.

3 How pret Works

To build an appropriate ODE model from the information described in the previous sec-
tion, pret calls upon its encoded knowledge via a custom �rst-order logic system. As
mentioned before, this knowledge base includes general knowledge about ODEs | how to
recognize and locate attractors; that the divergence of a dissipative system is negative; that
the entries in the Jacobian of a linear system are constants; etc. | and domain-speci�c
knowledge like force or energy balances. Both general ODE rules and domain-speci�c rules
may easily be changed or augmented by the user; several dozen of the former and half
a dozen of the latter will be hard-coded in each supported domain. These rules govern
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how hypotheses and models are combined, tested, ruled out, augmented, and simpli�ed.
Throughout the process, reasoning proceeds at the highest level possible; symbolic and
qualitative techniques are attempted �rst and numeric ones are used only as a last re-
sort. Finally, the modeling process will ultimately be an active one, since the program has
been designed to use actuators and sensors to manipulate the system and test the evolving
model.

A set of candidates for the program's �rst attempt at a model is constructed by mapping
the domain rules onto the hypotheses | e.g., using (point-sum <force> 0) to combine
<force> = A1

�� and <force> = A2 sin � into the model A1
�� + A2 sin � = 0. Most of the

resulting candidate models can quickly be ruled out using symbolic techniques; for example,
if a state variable is known not to be constant, the model must include its derivative. The
simplest remaining model | the base model | is then checked against the speci�cations
and observations. If this check fails, the program re�nes the ODE, using the domain rules
to introduce another hypothesis from the user's list. The check is then repeated and the
program loops until either a successful model is found or the possibilities are exhausted. As
a last resort, if no combination of user hypotheses yields an adequate model, the re�ner will
ultimately use power-series expansion methods to synthesize terms from scratch. Successful
models that emerge from this process will eventually undergo a round of simpli�cation,
wherein terms are removed and the resulting ODE is rechecked, to remove super
uous
terms.

This control 
ow design contains a compromise. The simplify/re�ne loop will allow the
program to move sideways through the search tree of models, recovering from bad choices
and making globally good moves that require descent into one local minimum of the search
landscape. We could also have chosen to loop more than once, which would increase the
width of the program's lateral reach through the search space and allow it to �nd the
provably minimal model in that space. However, such a search would have the standard
complexity problems[56] and one of the goals of this project is to produce a \good enough"
answer in minimal time.

The four main steps in the process described in the previous paragraphs | and the
mechanics and implications of failure in each | are described in the next four subsec-
tions. The following subsection describes the design and use of hardware interface and the
mechanics of input-output modeling, and is followed by a brief discussion of related work.

3.1 Generating the First Model

The base model generator uses domain rules to combine hypotheses and ascertains which of
those combinations (models) are minimally consistent with the user's observations. The in-
tent is to produce a preliminary solution to an exponentially complex problem very quickly;
to e�ect this, the base-model generator uses a subset of the full set of inference rules called
upon by the consistency checker and does very little reasoning about what terms to try
next. When the answer that it produces is incorrect | a not-unlikely occurrence because
of its quick-and-dirty techniques | the re�ner and simpli�er will act as a safety net, as
described in the penultimate paragraph of the previous section.
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The hypothesis list is �rst sorted using a simple-minded complexity metric, discussed
in section 3.3. The base-model generator then constructs a one-term model from the �rst
hypothesis in the list and checks it against the observations. The checker tries to �nd con-
tradictions between properties of the model and properties of the system to be modeled.
At the beginning of this process, the only known properties of the target system are the
user's observations. The inference mechanism deduces additional properties of both the
model and the target system. This deduction process will eventually be governed by a
set of control rules in order to �nd existing contradictions quickly. The syntax in which
properties and rules are represented is similar to �rst-order logic; our \descriptive obser-
vation keywords" correspond to logic's \predicates." For example, from the observation
(damped-oscillation <theta>) in �gure 2, it will be inferred that the model must be
of at least second order. The �rst candidate model | the one-term ODE A2 sin � = 0
constructed by (point-sum <force> 0) from the second hypothesis in the �gure | does
not meet this requirement, so the program establishes a contradiction and the check fails.
Note that pret accomplished this using only high-level, symbolic reasoning, much as a
human expert would, dismissing this model \by inspection."

The process is repeated using the next entry in the sorted hypothesis list, and so on. If
none of the one-term models passes, the base model generator then starts testing two-term
combinations. Note that combination need not imply sum; the form of the combination op-
erator is implicit in the operative domain rule. Note, too, that the hypothesis combination
mechanism is obvious and trivial here, but it rapidly becomes complicated and subtle in
an even slightly more complex system, such as a double pendulum, which has two degrees
of freedom and four coupled state variables.

If all two-term models fail, the program proceeds to three-term models, and so on.
The �rst ODE in this succession whose properties do not con
ict with the facts inferred
from the observations by the operative set of inference rules is then passed to the full
check/re�ne/simplify loop, whose elements are described in the next three sections. The
re�ner will improve upon this simple, mechanical progression through the hypothesis list
by reasoning qualitatively about what the model-observation disparities imply about what
kinds of hypotheses to try next; see section 3.4 for more discussion of this issue.

3.2 Checking Models Against Observations

The consistency checker carefully compares the behavior of an ODE to a set of observations,
using the speci�cations as guidelines for how closely to enforce the match. The core of this
part of the program is the same custom logic inference system used in the base model
generator to infer knowledge about the model and knowledge about the physical system
via application of rules to the ODE and to the observations. The checker, however, uses
a much larger set of inference rules. Any contradiction between the two sets of inferred
facts, as before, causes the model to fail the check. Like the other parts of the program, the
consistency checker uses high-level reasoning �rst, attempting to establish a contradiction
using only qualitative and symbolic methods, and performs blind numerical simulations
and comparisons | which are absent from the base model generator's rule set | only as
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a last resort.

The program's knowledge about the model's coe�cients evolves in an observation-de-
pendent fashion as the ODE moves through the phases of the consistency check. If all of
the facts inferred by the logic system are coe�cient-independent | e.g., the \model must
be at least second order" implication of the (damped-oscillation <theta>) observation
in �gure 2 | none of the Ai will be determined in the inference process, so the returned
model strongly resembles a QDE (see the QSIM example in section 1.1). In a point-by-
point comparison with a numeric observation, on the other hand, the ODE coe�cients must
be computed before the model's behavior can be simulated. Thus, quantitative observa-
tions \drive" the ODE model away from the imprecise, QDE-type end of the spectrum of
precision and abstraction and towards the exact, fully speci�ed ODE end.

The problem of determining values for the coe�cients, known as parameter estimation,
is the topic of a rich body of literature[48] and the focus of many sophisticated global
optimization techniques. We solve it using the ODRPACK package[10], based on orthogonal
distance regression and developed at NIST. Given a data set and an ODE with unknown
coe�cients, ODRPACK computes values for the coe�cients and returns a least-squares
error measurement for the �t. Currently, we pass the returned coe�cients directly to
a numerical integrator, so if ODRPACK's �t is bad, the point-by-point comparison will
fail. A more intelligent interpretation of the least-squares error metric is almost certainly
possible, but we have not yet determined how to automate it e�ectively. One should be able
to do some useful qualitative reasoning with this information, since it typically di�ers by 4
to 5 orders of magnitude between ODRPACK runs on good and bad models. However, it is
a strong function of the length of the data set, the nonlinearity of the ODE, and a variety of
other factors, so its use is more complicated than it might appear. Incidentally, we cannot
just use the least-squares sum to corroborate a model against a numeric observation, as
there is no way to instruct ODRPACK to �lter its computations through speci�c ranges or
resolutions.

Many observations fall between the numeric and symbolic extremes, causing the inferred
facts to contain bounds or qualitative restrictions on algebraic combinations of coe�cients.
One of the program's most powerful and complex rule groupings is a good example of this:
if a system oscillates, the imaginary parts of at least one pair of its roots must be nonzero.
A damped oscillation further implies that the real parts of all roots must be less than
zero, and so on. Thus, if the model A1�x + A2 _x + A3x = 0 is to match an oscillation

observation, the coe�cients have to satisfy the inequality 4A1A3 > A2

2
. The preceding

discussion is actually somewhat simpli�ed; the concept of a \root" of a nonlinear equation,
even over a limited, linear range, requires some extra care in interpretation and use. Note,
�nally, that many di�erent forms of facts can be inferred from a single observation, ranging
from the purely symbolic (\at least second order") to partially (4A1A3 > A2

2
) or fully

quantitative (A1 = 1:235764).

Much like a human modeler, the checker takes a minimalist approach: if there is no indi-
cation that the model is wrong, we assume it is right6. In the inference process used by the

6This resembles the closed world assumption that underlies many logic systems.
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checker, knowledge about the physical system and knowledge about the candidate model is
represented declaratively using �rst-order logic. New knowledge is deduced via application
of rules to previously established facts. The check fails if and only if a contradiction has
been established. An example of a rule whose application leads to a contradiction is

(<- falsum ((oscillation (var X))

(scheme-eval (all-roots-real? (var X) current-model))))

This rule can be read as \it is contradictory that X oscillates and all roots of the model
relative to X are real." The general form of these rules is (<- head body) where the body
is a list of goals. Logical variables are identi�ed through the keyword var and instantiated
during the inference process by usual uni�cation7. The special variable current-model is
instantiated with the model that is currently being checked; in this way, the current model
can be passed as an argument to Scheme functions that are invoked by the special predicate
scheme-eval. A succeeding scheme-eval goal returns the corresponding uni�ers. An
ordinary goal succeeds if it can be uni�ed with a previously established fact. The current
incarnation of the program employs breadth-�rst forward reasoning. We are currently
investigating the advantages and disadvantages of forward versus backward reasoning for
our speci�c task. Note that all knowledge inferred about a particular model is relative to
that model and is therefore local to the particular checker call. The knowledge inferred
about the physical system, however, does not depend on the model whose check caused the
knowledge to be inferred. Thus, facts about the physical system can be globally reused.

The set of inference rules that deduce facts from the descriptive keywords of qualitative
observations is similar to the rule set used by the base model generator | in fact, the
latter is a subset of the former. Table 1 gives some examples of descriptive observations
and the facts that the logic system infers from them. This is only a small sampling of
observations and inferences. Many other possibilities exist; because of the logic system's
structure, implementing each is only a matter of a few lines of Scheme code and/or a
call to Maple. For instance, regions where the behavior is observed to match a particular
polynomial can be checked using the terms of a Taylor series constructed symbolically by
Maple's taylor function. Singularities and symmetries are not only obvious to users, but
also extremely powerful sources of purely symbolic comparisons. The classical mechanics
formulation adopted here makes reasoning about symmetries straightforward: if the con-

jugate momentum that is associated with a coordinate | easily derived from an ODE
with simple algebra | is zero, the system is symmetric with regard to that coordinate. A
simple ODE rule exploits this property to corroborate model and observation symmetries
at a purely symbolic level. The QSIM program[35, 37] mentioned in section 1.1 performs
qualitative simulation of qualitative di�erential equations (QDEs); given an ODE$QDE
translator, currently under development, QSIM could be used to establish qualitative facts
about ODE models.

While observations represent explicit information about properties of the physical sys-
tem, an ODE does not contain explicit information about properties of the model | rather,

7Since this prototype of the program emphasizes correctness over e�ciency, the uni�cation algorithm
includes the occurs check[50].
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Observation about state variable x Implications for the model f(x; t) = 0

autonomous cannot explicitly contain t (i.e., f(x) = 0)
chaotic cannot be linear
chaotic and autonomous order > 2
oscillation and autonomous imaginary part of one pair of roots > 0
oscillation and autonomous order � 2
linear should satisfy �x = 0
constant should satisfy _x = 0
conservative r � f = 0
damped oscillation and autonomous r � f < 0
growing oscillation and autonomous r � f > 0

Table 1: Some observations and the corresponding inferences drawn by the logic system

ODE property Method Consequence

linearity Maple/jacobian model is linear
model is nonlinear

time dependence Scheme/symbolic model is function of time
model is not a function of time

divergence Maple/mixed algebraic equation for divergence
order Scheme/symbolic order of model is n
roots Maple/eigenvals algebraic equation for roots

Table 2: Observer functions that infer facts from models

the ODE is the model. Observations act as a basic set of facts about the physical system
from which further knowledge can be inferred. In a corresponding manner, a collection of
Scheme functions | e.g., all-roots-real? | \observes" the model, yielding a basic set
of facts about it, like the ones listed in the right-hand column of table 1. This collection
of Scheme functions essentially implements the basic operations found in any mathematics
text; some representative examples are shown in table 2. pret's framework makes imple-
menting the functions in these tables extremely simple. The rule that a linear model cannot
account for chaotic behavior, for instance, requires only the following three statements:

(<- falsum ((non-linear (var X)) (linear (var X))))

(<- (non-linear (var X)) ((chaotic (var X))))

(<- (linear (var X)) ((scheme-eval (linear-system? (var X)

current-model))))
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We also would have to implement a Scheme function linear-system? that checks if an
ODE (the current model passed as an argument) is linear in a certain variable | a simple
symbol check on the result of a Maple jacobian call.

A consistency check of a model against a numeric observation proceeds at a much lower
| and more expensive | reasoning level than a descriptive observation check. Such an
operation typically entails a comparison of a numerical integration of the ODE, performed
here with fourth-order Runge-Kutta[44], and a set of point-by-point observations. As men-
tioned above, this comparison is preceded by a orthogonal distance regression �t of model
coe�cients to numeric data, performed by the ODRPACK global optimization package.
The integrator time step is chosen smaller than the spacing of the numeric data in order
to make the comparison accurate; if the time step in the real data varies, integrated points
are connected with splines. Proceeding directly to an expensive point-by-point comparison,
however, is not the most intelligent approach, particularly since qualitative information can
be distilled out of numeric data. This suggests a preprocessing step, in which qualitative
features of the data in a numeric observation are extracted once, at the beginning of the
run, and then used in the checks of every model in the progression. This tactic allows the
logic system to establish some contradictions without performing numerical integrations
of candidate models, even if all the observations are numeric. To test this idea, we have
implemented geometric recognition of high-level behavior patterns like chaos, thresholds,
oscillations, etc., using computer vision techniques that superimpose a variable-resolution
grid over the system's state space, discretize the trajectories into lists of grid squares, and
analyze the patterns in those lists[11]. This ties in well to the input format of section 2:
speci�cations and observations can be used to set up the geometry of the grid, assuring
adequate resolution in the results, attained with the minimum computation.

Graphical observations fall between descriptive and numeric observations in terms of the
precision and processing required. The geometric reasoning and classi�cation techniques
described in the previous paragraph will be used to distill out high-level information; we
also plan to use Maple's symbolic algebra, interpolation, and curve-�tting facilities to
recognize bounds, asymptotes, polynomial approximations, etc., in the user's sketches.
The logic system will treat the qualitative results yielded by these techniques exactly like
any other descriptive observation keyword. Given its inherent imprecision, trying to distill
any quantitative | or even semi-quantitative| information from a sketch makes no sense.

If any model fails a check, a failure report is generated; this report contains the model,
the violated observation(s), and the proof tree constructed by the logic system in estab-
lishing the contradiction. These discrepancies are a rich source of information about the
process, both preceding and following the failure. They could be used by the other program
modules | a form of discrepancy-driven re�nement[3, 53] | in a variety of ways: to back
intelligently out of blind alleys, to avoid duplicating previously performed checks, or to
pick up at some appropriate midpoint in the event of a restart. As a start, we plan to
use qualitative and symbolic reasoning to interpret the discrepancy data; this could, for
instance, suggest what terms from the hypothesis list to try next: if the cause of failure was
a contradiction between a linear model and some observed complex behavior in the system,
one might not wish to try yet another linear model. To avoid duplication and facilitate
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escape from blind alleys, we ultimately plan to add the model's full genealogy to the failure
report | all branches in the search tree of candidate models that were traversed during
the construction, simpli�cation, and re�nement processes.

3.3 Simpli�cation: Reducing a Model to Lowest Order

The purpose of the simpli�er is to remove unnecessary terms from models. It will �rst
identify a candidate term, delete it, and then invoke the consistency checker on the re-
maining ODE. If the check fails, the simpli�er will replace that term and remove another.
This process will be repeated until some (n � 1)-term \sub-model" of the n-term model
passes the check, or until all (n� 1)-models have been tested unsuccessfully. In the latter
case, the model is deemed minimal and is passed on as a �nal result. If any sub-model
does pass the check, the entire process will be repeated, testing all (n � 2)-term subsets
of the original ODE, and so on. A subtle issue is involved in this progression: sometimes
adding or removing pairs of terms (or larger groupings) works where successive single-term
removal does not: again, consider coriolis and centripetal forces. We plan to investigate
this and tailor the design accordingly.

The interesting reasoning in the simpli�er concerns the following task: given an ODE
and a set of observations that it satis�es, choose the term that is most likely to be su-
per
uous. Like the consistency checker, the simpli�er will take a top-down, symbolic-�rst
approach to this task. It will use many of the same techniques as do the base model
generator and the checker. For instance, if a system is observed to be chaotic, the model
must be nonlinear, and so at least some of the entries in the system's Jacobian matrix
must be functions of the state variables. Symbolic computation of that matrix will show
which terms cannot be removed without making those entries constants. Symbolic algebra
could also be used to identify terms whose removal would destroy matches to observed
symmetries. For example, if angular momentum is conserved around a particular axis, the
conjugate momentum p� associated with the coordinate � that de�nes motion around that
axis must be zero. If the user has de�ned such a coordinate | which, having observed the
symmetry, s/he would almost certainly have done | p� is an extremely simple algebraic
function of the ODE, and it would be obvious what terms must be present in the model to
make it equal to zero. Since so much of this reasoning is so similar to that performed by the
checker, much of the inference system will probably be shared between the two program
modules.

If high-level symbolic and qualitative reasoning cannot identify a good candidate for
removal, the simpli�er will then turn to less-intelligent techniques, such as removing the
\simplest" terms, as de�ned in the following paragraph, or terms whose coe�cients are
much smaller than the others in the model. These choices are somewhat ad hoc; it is
not at all clear that we will gain much from either one, beyond a de�ned order of attack.
Asymptotic order-of-magnitude reasoning[58] could be used to formalize the process of
identifying terms with small coe�cients; another approach might be to give the user some
leverage by weighting hypotheses according to order of entry. Each of these tactics has
advantages and disadvantages; each shifts a di�erent amount of the burden of rigor from
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the simpli�er to the checker.

Ordering terms or hypotheses logically is di�cult because no satisfying simplicitymetric
exists. The modeling literature contains no good solutions to this problem, and we have
no better suggestions. The metric that we use is based on number and complexity of terms
and derivatives: x+3.x;xn.xn�1; _x.x; etc., where . denotes \more complex than." This
is unsatisfying for a variety of reasons, not the least of which is how to resolve ties between
equations like x + x2 and x3 + 4. One of the seminal papers in qualitative modeling
uses a similar metric[24] and gives similar disclaimers about its unsatisfying nature. A
more-recent paper[43] de�nes model simplicity heuristically, terming a model that is \more
approximate" or that \uses fewer phenomena" as more simple, but does not suggest how
to solve the problem of how many hypotheses are associated with a phenomenon.

Finally, discrepancy-driven reasoning can aid in the simpli�cation process. If a sub-
model fails the check, the cause-of-failure report returned by the checker | speci�cally, the
proof tree that contains the reasoning that led up to the contradiction | can potentially
help the simpli�er decide which term to try removing next. For example, if removing an
everywhere-positive term like x2 caused the model to fail to match some observation that
required the divergence of the ODE to be zero, one might not want to remove an x4 term
next. The time-saving mechanism here is reuse. Removing other terms in the model may
cause similar proof trees to be built and any section that is identical to that created by
the previous removal of another term can be reused rather than reconstructed. Reason
maintenance techniques[17, 22, 28] will be used to perform this type of book-keeping and
manipulation of proof trees.

3.4 Re�nement: Adding Terms to an Inadequate Model

The re�ner will use ODE and domain rules, observations, and hypotheses to add terms
to a model, keeping track of previous attempts in order to avoid duplication of e�ort. It
will �rst draw upon the user's hypotheses, then synthesize ODE terms from scratch using
power-series expansions if no successful hypothesis-based model can be found. These power-
series methods are a powerful safety net: a one- or two-term expansion in � and _� would
reproduce every form of friction found in freshman physics texts | and a few more besides.
Moreover, these methods will actually allow the program to create new state variables |
an important feature if the observation vector is smaller than the true state vector.

The re�ner's �rst task will be to prune the sorted hypothesis list, removing any entries
that were used in the base model. The �rst hypothesis in the sorted list will then be
added to the base model and the checker called on the new ODE. If that model fails,
the re�ner will remove the previously introduced term and successively try the rest of the
hypotheses in the ordering, one at a time. If no one-term addition causes the model to
match the observations, the re�ner will then try pairs of terms, and so on. This process
is exponentially complex, but in a fairly small number, since the user is unlikely to enter
more than a half a dozen hypotheses per coordinate. More importantly, most of these
combinations will be ruled out with quick symbolic checks. The �rst successful model will
be returned as the re�ner's result. If the re�ner exhausts the list of hypotheses before
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�nding an adequate model, the power series methods outlined in the previous paragraph
will be invoked. These expansions are subject to a user-speci�ed limit p; if no match has
been established after the re�ner tries the pth term in the expansion, the program will
admit failure and request additional hypotheses from the user.

Simplicity metric di�culties, discussed at the end of the previous section, also a�ect
the design of the re�ner. The metric proposed here may not be rigorous, but it at least
provides a starting point. A possibly useful alternative would be, again, to use the entry
order verbatim. A half-dozen informal interviews have suggested that most users do indeed
list hypotheses in order of perceived simplicity, so this may not be a bad idea. A much
more intelligent approach would be to choose the hypothesis to be added according to its
behavior, using symbolic and numeric techniques similar to those discussed in the previous
section, and to use the failure report as an additional source of pointers. For instance,
if a model failed a check because its order was too low, a constant hypothesis should be
lower on the list of things to try than a term containing a �fth derivative. Note that such
a hypothesis should not be removed from the list altogether; it may well appear in the
ultimate model, along with other terms that were added �rst. An even more intriguing
idea would be to use domain knowledge, such as the link between coriolis and centripetal
forces, to go directly to the right hypothesis in the user's list (or even to compensate for a
user's oversight and introduce it, should it be missing).

The two automatic term-synthesis techniques proposed here are derived from power-
series expansions. Canonical perturbation theory[31, chapter 11] creates new parame-
ters and Frobenius's method[41, page 187] creates new state variables, each via expan-
sion in the appropriate quantity. One can also synthesize new state variables using delay
coordinates[32], but doing so would vastly complicate the symbolic algebra that plays such
a critical role in pret. Because the lower-order terms of power-series expansions are likely
to match (up to a coe�cient) simple physics hypotheses, the modeler will use simple sym-
bolic techniques to avoid duplication of e�ort, eliminating any power series expansion terms
that also appear in a user hypothesis. Note that the intelligent term-addition technique
suggested at the end of the previous paragraph is based in domain physics, whereas these
power-series expansions are mathematically general and purely mechanical methods.

The combination of the machinery described in this and the preceding three subsections
will allow the program to preferentially check the user's hypotheses in some intelligent
order, then synthesize and explore new state variables and parameters if necessary, possibly
concocting model terms that do not resemble any of the given hypotheses. pret will even
be able to construct models in the absence of any hypotheses | if the underlying physics
admits a power-series description. The ODE and domain rules, together with symbolic
reasoning and qualitative behavior descriptions, will allow this tool to reason at a very
high level indeed. For example, if a system was observed to be chaotic, but only one
state variable was speci�ed, the power series methods would be invoked automatically to
synthesize a new state variable before the program even attempted to build a base model.
This automatic modeling tool will be able to adapt the scope of the model on the 
y,
inferring \state variables" that are internal (e.g., voltages inside a black box) or that were
omitted by oversight (e.g., low-amplitude, low-frequency vibration of a bench by a lab's
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HVAC system). These quantities are di�eomorphically related to the true state variables
of the system, so models based upon them can be used to draw some rigorous conclusions.
Again, formal observer theory is not a goal of this project, so pret will not be able to solve
this problem in all situations.

3.5 Incorporating Physical Measurements

An important feature of the physical link between modeler and system is that data will be
able to 
ow across it in both directions, making the modeling process an active one | in
all parts of the procedure described in the previous four subsections. This has a number of
important implications. Among other things, pret could autonomously exercise the target
system in order to verify or augment the observations in the find-model call, possibly
constructing and using observations that transcend its user's knowledge of physics. For
instance, the boundaries of the basins of attraction of the ODE and the target system could
be compared using di�erent-energy kicks, even if the user knew nothing about dynamics
and basin structure. Obviously, this presents some dangers: if the program is free to use
the sensors, the actuators, and the full breadth of its own (signi�cant) knowledge base, the
only controls on the sophistication and intricacy of the resulting model are the resolution
and the expansion limit p. To address this problem, we have introduced another parameter,
max-level, that gives the user explicit control over the number of terms that pret may
use in the model.

This approach also has some serious and imposing limitations: observability, reachabil-
ity, and controllability. The components of the observation vector ~x in �gure 1 may not
represent unique functions of elements of the internal system state. Moreover, measuring
any particular quantity may not be possible | because it is physically inaccessible or be-
cause no appropriate sensor exists. Finally, some state-space regions may not be reachable
from the existing initial condition, which will limit pret's ability to test out its hypotheses.
We do not plan to attempt any sort of general solution and write code that instantiates
the vast number of ideas in the controls literature that address these problems; we simply
plan to identify the resultant limitations and work around them. Even if the possibilities
are limited, any physical corroboration is better than none; moreover, even identifying
the limitations will require some subtle and interesting manipulation of the actuators and
interpretation of the sensor data.

On the whole, physical measurements will be treated exactly like numeric observations,
from the program's point of view, with one important distinction: in the event of a con
ict,
the former will be trusted over the latter. Measurements will be processed and translated
into the syntax of descriptive user observations and then used in exactly the same ways |
as targets for symbolic comparisons. The measurement-processing algorithms that extract
this qualitative information from the sensor data will follow the same approach to behavior
recognition outlined near the end of section 3.2.

With the hardware data channel in place, the program could potentially be used not
only to model a physical system, but also to debug designs, or even to validate and verify
devices ostensibly constructed according to a known design | a procedure known in the
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AI literature as model-based diagnosis, e.g., [20, 23]. For example, if a particular 2.5K
,
1/4 Watt resistor burned up every time a device was turned on, one could place probes
across its terminals, set up an observation that speci�es \voltage over 25 volts," and observe
discrepancies between the resulting model and what was intended. Needless to say, one
would want to isolate the sensors from potential damage during such an experiment.

3.6 Relationships to Related Work

Modeling research spans many �elds, from the cognitive science-related branch of AI[39]
through operations research[29], dynamic systems[30], and control theory[5] to qualitative
reasoning (QR)[8]. The research described in this paper falls most naturally under the
general AI rubric, but has strong ties to the system identi�cation branch of control theory
as well | in fact, it can accurately be described as an AI-assisted approach to system
identi�cation. Section 1.1 presented a broad introduction to AI and QR modeling research;
readers of that section may wish to skip the next paragraph.

Some of the earliest QR/modeling work[24] builds upon a �xed base of hypotheses,
instantiates only those that are appropriate to answer a given query, and chooses between
them with a truth maintenance system. The graph-of-models approach[2] is similar in
many regards to [24], but represents the space of possible models as a directed graph of
models where edges between nodes (models) are approximations8. Another approach[53]
adapts models to problems using model sensitivity analysis, which formalizes and exploits
the e�ects of parameter changes in the construction of the model. The combinatorial
explosion involved in limit checking (e.g., the pendulum's asymptote to � = 0) can be
mitigated[36] by decomposing and abstracting time into a hierarchy of scales. Rules for
determining the behavior of a composite device can be derived from the models of its
constituent components[18]. This is an extremely active research area; many good papers
by many other groups, as well as many other papers by the cited groups, have appeared
in the past �ve years. The state of the art in this �eld is particularly well-summarized
in a review article by Weld[53], which is also the source of much of the terminology used
here. Concepts common to this paper and the bulk of the QR/modeling literature include
avoidance of unnecessary terms, model re�nement driven by failure at a \lower" modeling
level, and reasoning that proceeds at as a high level of abstraction as possible.

pret solves the same problems as traditional system identi�cation[40], but techniques
in the latter tend to be purely mechanical and numerical. [47], for example, does a Volterra-
series expansion in the input variable to obtain a set of terms (much like those concocted by
the second re�ner phase, after the user's hypotheses have been exhausted), then matches
coe�cients using regression. Commercial programs like Di�eq automate the lowest levels
of the system identi�cation procedure, allowing users to interactively modify parameters
to obtain an optimal solution. The goal of the research described here | and the most
important di�erence between pret and programs like Di�eq | is the automation of that

interaction. An important and di�cult part of this task is the automation of the decision

8The propositional reasoning in [24] also uses a digraph, but it is used implicitly and constructed
somewhat di�erently.
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about when to use which techniques and how to set them up. For instance, pret auto-
matically sets up a complex call to a parameter estimation package to �nd values for the
unknown coe�cients, specifying parameters, initial conditions, tolerances, timesteps, etc.
that are appropriate for each individual situation. Such decisions, often the most subtle
parts of the problem-solving process, are unthinkingly natural to a human expert.

4 Status and Discussion

This paper describes results of the �rst stages of a highly ambitious project and proposes
some solutions that will be required for the next stages of this task. To date, we have built
a functional and representative subset of the program | hence the mix of verb tenses and
section lengths herein. The current version of pret incorporates a few instances of each
technique, providing a quick check of the whole symbolic/numeric paradigm and the overall
control 
ow (hierarchy of hypotheses, domain rules and ODE rules; control 
ow between
modules, and so on). Most importantly, it has allowed us to test and re�ne the syntax and
the use of the various types of user inputs.

This �rst version allows one-term hypotheses involving a single state variable and the
keywords <force> and <time>, sorts them according to the simplistic metric proposed in
section 3.3, incorporates one rule ((point-sum <force> 0)) in one domain (mechanics),
has a reduced vocabulary of a dozen or so qualitative terms (e.g., chaotic, linear,

autonomous, numeric) and a correspondingly small repertoire of symbolic and numeric
techniques that infer facts from these properties, and has been tested on two-dimensional
systems, such as the pendulum modeling call of �gure 2.

To illustrate pret's operation, we will give a narrative description of the program's
actions as it executes the find-model call given in �gure 3, a version of �gure 2 that has
been simpli�ed to streamline presentation. Once again, note that the pendulum is used
here because it is a clear and obvious example; no engineer would use a software tool to do
generate-and-test model generation and guided search to �nd an ODE model of a system
so simple and well-understood. This example is representative neither of the power of the
program nor of its intended target applications.

Preprocessing of the numeric observation shows that <theta> is not constant9. The
base-model generator then uses the force-balance rule to map the �rst hypothesis into
a one-term model. This model, A2 sin � = 0, does not contain the derivative of �, and
so is immediately ruled out via contradiction with the not-constant fact inferred from
the numeric observation. pret's second attempt, A1

�� = 0, does pass the not-constant

consistency check because its order is high enough. The check of this model then proceeds
to the numeric phase. The parameter estimator is invoked to compute the coe�cients,
but the model is so far o� that ODRPACK is unsuccessful, causing the check to fail. The
program then attempts the two-hypothesis model A1

�� + A2 sin � = 0. This model, like
A1

�� = 0, passes the not-constant check because it contains a second derivative of �.
Unlike the simpler model, however, it is good enough to let the parameter estimator match

9This can be established with the �rst two data points: 0:1234� 0:1003 > 1e� 3.
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(find-model

(domain mechanics)

(state-variables <theta>)

(point-coordinate <theta>)

(hypotheses

(<force> (* (constant A1) (deriv (deriv <theta>))))

(<force> (* (constant A2) (sin <theta>)))

(observations

(autonomous <theta>)

(numeric (<time> <theta>) ((0 .1234) (.1 .1003) ... )))

(specifications

(resolution <time> absolute 1e-6 (0 120))

(resolution <theta> absolute 1e-3 (0 (* 2 pi)))))

Figure 3: A simple modeling run on the damped pendulum: the invocation

its coe�cients against the data. Using these coe�cients, fourth-order Runge-Kutta, divided
di�erences for the initial conditions, and splines to interpolate between data points, pret
compares the numerical solution of the ODE to the numeric observation in the find-model
call. This comparison succeeds, and the model and its coe�cients are returned as the �nal
result:

((model ((= (+ (* (constant A2) (sin <theta>))

(* (constant A1) (deriv (deriv <theta>))))

0)))

(((constant A1) 2.) ((constant A2) 3.)))

The returned value also contains some other information, not shown here, concerning in-
ference depths, number of rule applications, and abstraction level, plus a list of all known
facts about the model | which, since there was no contradiction, we assume are also facts
about the system.

Note that the autonomous observation never comes into play here because none of the
hypotheses are functions of time. Had the user entered a term like

(<force> (* (constant A6) (sin (* 1.5 <time>)))),

pret would have constructed and tested nonautonomous models like A1
��+A6 sin 1:5t = 0.

Facts inferred from such models would con
ict with facts inferred from the autonomous

observation. Since these inferences would require only symbolic manipulation, eliminating
those models would be an inexpensive operation | much less so than the parameter es-
timation, numerical integration, and so on that might be required in the absence of that
observation.

Had �gure 3 included a (damped-oscillation <theta>) observation, as in �gure 2,
pret would have inferred, among other things, that the model must be of at least second
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order. Like the not-constant fact inferred from the numeric observation, this would cause
a contradiction that ruled out the model A2 sin � = 0. There are two important issues here:
(1) inferring two facts where one would be enough to establish a contradiction is wasted
e�ort and (2) the processing of the damped-oscillation is much less computationally ex-
pensive. pret currently applies all of the inference rules and then looks for contradictions.
We plan to address the two issues mentioned above by implementing a control rule layer
that will guide the reasoning more intelligently | e.g., applying the least-expensive rules
�rst and looking for contradictions at several midpoints in the process.

Finally, we have also experimented with adding white noise to the numeric data and
changing the resolution in the speci�cations, with predictable results: the program still
�nds the right model if the added noise is small compared to the resolution, and fails when
it is not.

pret does not currently simplify models if they contain too many terms, nor does it
re�ne them in any of the intelligent ways suggested in section 3.4; these tasks are two of
our current research objectives. We are currently re�tting pret to use the proof trees
maintained by the logic engine (which document all of the reasoning that has been per-
formed) and discrepancy-driven reasoning to decide which terms to add or remove from
the ODE. We are also working on power-series techniques to synthesize hypotheses auto-
matically | an idea that is ubiquitous in system identi�cation but completely absent from
the AI modeling literature. Finally, we are exploring analysis and control techniques to be
used to actively and realistically exploit sensors and actuators to allow a true input-output
approach to modeling10.

Longer-term goals are to expand pret's capability to handle more-complex and less
well-speci�ed systems, in several domains (mechanics, electronics, etc.), described by sketch-
ier observations, using a much richer rule set and multiple, heterogeneous keywords. We
expect these tasks to be harder and more interesting than those described in the previous
paragraph, particularly since our aim is emphatically not to build a tool that is tuned for
one particular application domain.

5 Summary

The work described in this paper constitutes a new approach to the old problem of system
identi�cation | one that calls upon arti�cial intelligence techniques, like logic program-
ming and qualitative, symbolic, algebraic, and geometric reasoning, to automate some of the
high-level reasoning involved in the system identi�cation process | choices, judgements,
and tasks that are normally performed by an expert control engineer. pret, the computer
program that embodies these ideas, uses general mathematical theory as a foundation, adds
concise and powerful domain-speci�c rules, and funnels user-speci�ed hypotheses through
general ODE theory and domain-speci�c rules via a custom �rst-order logic system to gen-

10This is also relatively common in system identi�cation but rare in AI. There has been much recent
interest in diagnosis and testing in the general AI literature[19], but the modeling subset of that community
has only just begun to use those ideas[52].
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erate \appropriate" models | ones that are well-matched to the task at hand. It exploits
intelligent, high-level techniques like symbolic manipulation from the outset, carrying them
as far as possible through each phase of the work, and using them to make the type of quick,
overall assessment that a human expert performs in the �rst stages of model-building. The
program then resorts to lower-level, less-intuitive methods to complete the analysis and
synthesis processes. The chosen set of inputs and the way that they are used closely resem-
bles the process one �nds documented on any designer's scratch paper: parts of equations,
rough sketches, scratched-out forays up analytical blind alleys, and an overall progression
of ideas and abstractions from simpler to more complex.

What distinguishes this work from existing system identi�cation tools is the amount
of the problem-solving process that is automated. The program described here uses many
of the same mathematical, mechanical, and numerical techniques used in traditional sys-
tem identi�cation, but contains an additional reasoning layer that automates many of the
higher-level tasks normally performed by its human practitioners | importantly, the choice
of which particular mechanical technique to use in a given phase of the identi�cation pro-
cess.

What distinguishes this work from traditional AI research is its use of quantitative
methods, engineering constraints, and real-world properties. Its mixture of exact and
approximate techniques and precise and heuristic knowledge may appear inelegant, but it
is very powerful. Another distinguishing characteristic is the ultimate goal of the research:
to help engineers model real systems, not to solve toy problems. Obviously, this will be
di�cult to attain, and progress must necessarily begin with solutions of known, textbook-
style problems.

The ultimate target applications of this modeling tool lie in areas where the basic physics
is not well-understood, where the systems are hard to observe, or where the mathematics
is very complicated. Ideally, this program would be able to build a model of a black-box
circuit, given access only to a single port11. The power-series methods of section 3.4 would
be critical to this, as they provide the mechanism whereby internal state variables are in-
ferred. Another optimistic example might be turbulent 
ow, where the underlying physics
is based on partial di�erential equations (PDEs) and the di�cult part of the modeling
task often consists of �nding the right ODE truncation of the underlying PDE-governed
behavior. Here, the modeling tool's contribution would be to combine mathematics, ob-
served physical phenomena, approximation, and abstraction to construct and test a large
number of models much more rapidly than an unassisted human user could, perhaps even
reasoning at a level beyond the user's knowledge of mathematics, physics, or observer the-
ory. The structure of the program | syntax, control 
ow, ODE/domain rule mechanics,
term-synthesis methods, actuator/sensor use, etc. | was designed to facilitate this, and
the examples presented here are small but useful steps in the right direction.
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