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Abstract

We describe a method for introducing variations into prede�ned motion se-
quences using a chaotic symbol-sequence reordering technique. A progres-
sion of symbols representing the body positions in a dance piece, martial arts
form, or other motion sequence is mapped onto a chaotic trajectory, establish-
ing a symbolic dynamics that links the movement sequence and the attractor
structure. A variation on the original piece is created by generating a tra-
jectory with slightly di�erent initial conditions, inverting the mapping, and
using special corpus-based graph-theoretic interpolation schemes to smooth
any abrupt transitions. Sensitive dependence guarantees that the variation
is di�erent from the original; the attractor structure and the symbolic dy-
namics guarantee that the two resemble one another in both aesthetic and
mathematical senses.

1Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship in
Science and Engineering from the David and Lucile Packard Foundation.
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Lead Paragraph

This paper describes a chaotic symbol-sequence reordering technique that

creates variations on prede�ned motion sequences. This work was inspired by

a similar scheme, proposed by Diana Dabby, that uses a closely related pro-

cedure to generate musical variations. We use special symbols to represent

human body postures, encoding the position of each of the main joints with

a quaternion, which de�nes an axis and an angle of rotation. The quaternion

symbol sequence representing the body positions in a dance piece, martial

arts form, or other motion sequence is mapped onto a chaotic attractor,

establishing a symbolic dynamics that links the movement progression and

the attractor geometry. Using this mapping of body positions to state-space

regions, we create a variation by following a new trajectory around the at-

tractor and inverting the symbolic mapping. Any abrupt transitions in the

chaotic variation are smoothed using corpus-based interpolation schemes that

are faithful both to the dynamics of the movement genre and thus implic-

itly to the kinesiology of the human body. Sensitive dependence on initial

conditions guarantees that the variation is di�erent from the original; the

attractor structure, the symbolic dynamics, and the interpolation scheme

guarantee that the two resemble one another in both the aesthetic and the

mathematical senses.
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Figure 1: A seven-position ballet jump sequence

1 Introduction

This paper describes a chaotic symbol-sequence reordering technique that creates vari-
ations on prede�ned motion sequences. This work was inspired by a similar scheme,
proposed by Diana Dabby[3, 4], that uses a closely related procedure to generate musical

variations. We map a progression of symbols representing the body positions in a dance
piece, martial arts form, or other motion sequence onto a chaotic attractor, establishing
a symbolic dynamics that links the movement progression and the attractor geometry.
We create a variation by following a new trajectory around the attractor and inverting
the symbolic mapping. Any abrupt transitions in the chaotic variation are smoothed
using corpus-based interpolation schemes that are faithful both to the dynamics of the
movement genre and thus implicitly to the kinesiology of the human body. Sensitive de-
pendence on initial conditions guarantees that the variation is di�erent from the original;
the attractor structure, the symbolic dynamics, and the interpolation scheme guarantee
that the two resemble one another in both the aesthetic and the mathematical senses.

To establish the mapping between an N -move motion sequence, like the ballet jump
shown in �gure 1, and a chaotic attractor, we �rst integrate a chaotic ODE system
_x = f(x); x(t) 2 Rn numerically from some initial condition x0. We then use a Voronoi
diagram to partition the state-space region occupied by the !-limit set �!(x0) of this
trajectory into N cells. Finally, we label the itinerary of cells traced out by �!(x0)
with special symbols that represent the sequence of body positions in the prede�ned
movement sequence. To create a variation, we then generate a new trajectory �(x0)
from an initial condition x0 near the attractor and invert the mapping: at each timestep,
the body position corresponding to the cell in which �(x0) falls is sent to an animation
tool.

The core of this algorithm follows directly from Dabby's work on musical variation,
wherein a simple metric on a projection of a chaotic trajectory with a brief initial tran-
sient is used to induce a symbol dynamics that captures the structure of the piece2.
This mapping, which \wraps" the pitch sequence around an attractor by associating
the notes in the sequence with state-space patches bounded by successive points of the

2The set of symbols is taken from the musical notes of the pitch sequence.
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chaotic trajectory, can be used to re-create the original piece (by using the same dynamic
system and initial condition, generating a trajectory, determining which patches it visits,
and playing the associated notes) or | with a di�erent initial condition | to generate
a variation. Variations generated in this fashion, whether musical or choreographic, are
both aesthetically pleasing and strikingly reminiscent of the original sequences. The
stretching and folding along the attractor guarantee that the ordering of the pitches or
movements in the variation is di�erent from the original sequence; at the same time,
the �xed geometry of the attractor ensures that a chaotic variation of Bach's Prelude
in C Major or of a short Balanchine ballet sequence resembles the original piece in the
classical sense of a variation on a theme.

Primarily because of the requirements of the application, many of the issues and
tactics described in the paper | together with much of the mathematics | are very
di�erent from Dabby's work. The symbol set is one obvious distinction. There is a sim-
ple, well-established notational scheme for music, but body positions are much harder
to represent; we use representational techniques from rigid-body mechanics to solve this
problem. The mathematics of the mapping is also di�erent in some formally important
ways; we work with a full, formal symbolic dynamics on the attractor, derived using com-
putational geometry techniques. Finally, while musical instruments can play arbitrary
pitch sequences, subject to instrument range and performer ability, both kinesiology
and aesthetics impose a variety of constraints on consecutive body postures in dance
and martial arts genres. To address this problem and smooth any abrupt transitions
introduced by the chaotic symbol-sequence reordering technique, we have developed a
class of corpus-based interpolation schemes that use graph-theoretic methods to capture
and enforce the dynamics of a given group of movement sequences.

The results produced by these mapping and interpolation algorithms have intrigued
both dynamicists and dancers. The chaotic variations bear an obvious resemblance to
the originals, and yet they are also clearly di�erent3. Broadly speaking, the variations
resemble the originals with some shu�ing of coherent subsequences. When contrasted to
random shu�es of the same sequences, the properties of this scheme become even more
apparent: the randomized \variations" bear little temporal resemblance to the original.
It is impossible to appreciate these results from a textual description; please see the
animations at http://www.cs.colorado.edu/�lizb/chaotic-dance.html.

2 Linking the Attractor Geometry and the Move-

ment Sequence

2.1 Symbolic Dynamics and Body Positions

A point in a state-space trajectory of a dynamic system can be described at di�erent
precisions, ranging from a tuple of real numbers to a symbol that identi�es a large

3A well-known dynamicist opined \It looks like Al Gore doing the macarena."
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{pelvis, 0, 0, 0, 1;

...

right-shoulder, -0.24, -0.65, -0.33, 0.65;

right-elbow, 0.76, 0, 0, 0.65;

...

left_toes, 0, 0, 0, 1 }

(a) (b)

Figure 2: Symbolic representation of the human body: (a) the descriptor/quaternion
symbol, which speci�es a vector and an angle of rotation around it for each of the 23
main joints in the body (b) the corresponding graphical representation used by the Life
Forms animation tool.

state-space region. Though the coarse-grained nature of the latter abstracts away much
detailed information about the dynamics, it preserves many of its invariant properties;
see, e.g., Hao[8] for details. Establishing such a symbolic dynamics[11] presents two
problems: the partition and the ordering. This paper o�ers novel and unusual solutions
to both: we use computational geometry techniques on points of a trajectory to obtain
a good partition, and we use the natural progression of body positions in a movement
sequence to induce the symbols and their ordering.

The symbol set used in our algorithms represents the position of each of the 23
primary joints in the human body with a quaternion | a standard representation in
rigid-body dynamics, dating back to Hamilton[7]. A quaternion Q(r; ~u) consists of a
three-space vector ~u and a scalar r that speci�es the angle of rotation around that
vector. Thus, a body position symbol S is quite complicated: 23 descriptors (pelvis,
right-wrist, etc.), 92 oating-point numbers (four for each joint), and a variety of
information about the position and orientation of the center of mass. See �gure 2 for
an example. This complexity is simply a reection of the representational task involved;
Labanotation[9], the graphically intricate system used by professional dance notators, is
even more baroque, and attaining pro�ciency in its use requires years of practice. Note
that this quaternion-based symbol set can be easily adapted to other body topologies,
such as those of insects. The code has been designed to support arbitrary topologies, so
this variation procedure is by no means limited to human movement sequences.

2.2 Tiling the Attractor

Creating a partition for the purposes of chaotically shu�ing a movement sequence re-
quires tiling the state-space region occupied by the attractor with N nonoverlapping
cells, where N is the number of postures si 2 S in the movement sequence s1; s2; : : : sN .
To accomplish this, we �rst integrate a chaotic ODE system _x = f(x); x(t) 2 Rn with
4th-order Runge-Kutta[14] from some initial condition x0 and let the transient die out.
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(a) (b)

Figure 3: A R�ossler trajectory for a 300-move movement sequence and the associated
Voronoi-diagram partition of the attractor. The perpendicular bisectors of the circled
trajectory points in (a) yield the Voronoi diagram in (b). Line segments that extend
beyond the bounding box of part (b) have been omitted from this plot.

The requirements of the mapping limit the number of cells to N , but the partition
requires that the collection of cells cover the attractor, and spurious numerical e�ects
preclude simply increasing the time step until a �xed-length (N -point) trajectory covers
a given attractor. We address this by �xing the timestep and trajectory length | choos-
ing values for these parameters that assure that the transient has died out, the attractor
is covered, and the dynamics include no spurious numerical e�ects | and using a \skip"
parameter, m, to control the spacing of the trajectory points that are used to construct
the cells. In �gure 3, for instance, m = 10, so every eleventh trajectory point (shown
circled) generates a cell. The speci�c algorithm that we use to actually construct the
cells, the Voronoi diagram[13], is drawn from the �eld of computational geometry; it
involves constructing and intersecting the perpendicular bisectors of every adjacent pair
of points, as shown in �gure 3. Note that a Voronoi diagram is essentially the dual of a
Delaunay triangulation; see Preparata and Shamos[13] for more details on this branch
of computational geometry. The actual implementation uses K-D trees[6], rather than
the usual Voronoi diagram construction algorithm, to reduce the computational com-
plexity in the step of the algorithm that �nds all the nearest neighbors from O(N2) to
O(N logN).

2.3 Establishing and Using the Mapping

Given an N -position movement sequence, expressed in terms of the quaternion-based
symbol set described in section 2.1, and an N -cell Voronoi tiling of a chaotic attractor
| like the N = 300 example shown in �gure 3 | establishing a mapping that links the
attractor geometry and the movement sequence simply amounts to equating indices: the
�rst entry c1 in the itinerary c1; c2; : : : cN of cells traversed by the trajectory �!(x0) is
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Figure 4: Part of the chaotic mapping that links a longer version of the jump sequence
of �gure 1 and the R�ossler attractor geometry of �gure 3. Only a few body positions
are shown here; in the full mapping, each Voronoi cell is labeled with a posture.

labeled with the symbol s1 that describes the �rst position in the movement sequence,
and so on4, as depicted schematically in �gure 4. Using this mapping of body postures
si to state-space patches ci to create a variation is equally simple, but somewhat more
computationally expensive: we generate another trajectory �(x0) from an initial condi-
tion x0 near the attractor, use the K-D tree to determine the Voronoi cell cj in which
its �rst point falls, output the associated body-position symbol sj to an animation tool,
skip m points, and repeat to the desired variation length. This procedure is quite rapid:
for a 1000-position movement sequence, the entire chaotic symbol-sequence reordering
procedure requires 18 seconds on an HP9000/735 workstation running HP-UX v10.20;
without the K-D tree, it takes 30.2 seconds. The K-D tree advantage grows (N logN
vs. N2) with the sequence length: for a 9000-move sequence, the times are 156.2 and
2324.2 seconds, respectively.

4This representation | a symbolic dynamics on an attractor, induced by a movement sequence
| preserves conjugacy to the Rn dynamics of �!(x0). This is interesting in that it implies that
the animations on the website are formally equivalent, in a precise mathematical sense, to the \real"
dynamics on the R�ossler and Lorenz attractors[8, 10].
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3 Interpolation

The symbol-sequence reordering scheme described in the previous section introduces
abrupt transitions in the chaotic variation | places where consecutive body positions
would require physically impossible or stylistically illegal moves. The interpolation
scheme described in this section inserts new body postures into these gaps in order
to smooth the progression. A simple and obvious way to do this would be to use splines
or some other purely mathematical interpolation technique on the quaternion data. This
does not, however, address the problem of stylistic or kinesiological illegality. A spline-
based interpolation may not, for instance, adhere to the requirement that the elbow
only bends 180 degrees. Using kinematics, together with state variable bounds that
express physiological constraints, would be a better approach, but F = ma cannot, for
example, enforce the requirement that ballet motion is linear5. To solve these problems,
we use a corpus of human movement (e.g., one composed of ten Balanchine ballets, if
one is working with dances of that particular genre, or one composed of four karate
kata if this chaotic variation method is to be applied to karate sequences) to select a
sequence of postures that would naturally occur between the two positions that frame
the abrupt transition. The composition of the corpus will, of course, a�ect the nature
of the interpolation; smoothing abrupt transitions in ballet pieces using an interpolation
scheme that is mathematically rooted in a karate corpus will negate the very aesthetic
resemblance that the core of the algorithm is designed to preserve. On the other hand,
this might be an interesting source of innovation, whereby one could mathematically
mix two or more styles.

To this end, we build a labeled, directed graph G(V;E) that captures the structure of
the movement sequences in the corpus. Each body position in the corpus is represented
by one vertex vi and each transition between successive postures is represented by an
edge eij between the corresponding vertices. Figure 5 shows an example of such a graph.
In this formulation, an illegal transition | de�ned as one that is not present in the
corpus | is a pair of vertices vl and vn that are not linked by a single edge eln, such
as the postures labeled a and c in �gure 5. When such a transition is encountered
in the chaotic variation, we use G(V;E) to compute an interpolation subsequence that
starts with vl, ends with vn, and is consistent with the corpus. Speci�cally, we use a
forward-backward modi�ed Dijkstra's algorithm to �nd the shortest path in G between
vl and vn, and then insert the body positions corresponding to the vertices traversed by
that path into the gap in the original sequence. In �gure 5, for example, there are two
two-edge paths that link postures a and c: fa ! b ! cg and fa ! e ! cg. The
abrupt transition fa ! cg could be patched with either of these two subsequences. Our
software provides a viewing option that highlights these inserted sequences in a di�erent
color | and editing tools for cutting and pasting | so choreographers and animators
can identify the insertions and discard, approve, and/or change the results6.

5In ballet, body parts tend to describe piecewise-linear paths through space, emphasizing the posi-
tions at the junctions of those linear segments; in modern dance, on the other hand, arcing motions are
much more common.

6Given that animations and movement sequences are almost always linked with soundtracks, it might
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Figure 5: A labeled, directed graph representing a small corpus of human movement.
Vertices represent postures present in the corpus and edges depict observed movement
sequences between those postures.
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Dijkstra's algorithm[5] �nds the shortest path from a single source vertex to all other
vertices in a graph; if more than one \shortest" path exists, as in �gure 5, it returns the
�rst one it encounters. For the forward version, vl is used as the source vertex. For the
backward version, vn is used as the source and the orientations of the edges in G are
reversed. The forward and backward algorithms are invoked simultaneously; each one
progressively deepens its search until a common vertex vm is encountered. The paths
from vl to vm and from vm to vn are then merged to give the desired shortest path from
vl to vn. The worst case total running time of this algorithm is O((V + E) log

2
V )[2].

To better model and enforce the nuances of a particular movement style, we are
improving upon this scheme in two ways. The �rst involves �ner-grained physical rep-
resentation. Currently, the atomic representational unit is a full body position; the next
version will perform joint-wise interpolation instead | e.g., bridging a gap by moving the
shoulder from its quaternion position in vl to its quaternion position in vn according to
the rules for shoulder movement that are implicit in the corpus, repeating for the elbow,
and so on, rather than searching for and patching in full body positions. The second
improvement involves probabilistic analysis of the transitions in the corpus. G(V;E) is
currently a simple labeled, directed graph, where transition legality is represented by
the presence or absence of an edge; to this, we are adding edge weights that represent
a measure of the probability of each inter-move transition. One logical choice for these
weights is the negative log-likelihood:

wij = � log(fi) + log(fj)� log(fij);

where fi and fj are the frequencies of postures i and j and fij is the frequency with
which posture j follows posture i. Small values for wij correspond to transitions that are
more likely to occur. With this addition, the interpolation scheme can �nd more-natural
subsequences with which to smooth abrupt transitions. For instance, a �ve-edge path
may have a much higher probability than a two-edge path if the latter is only observed
rarely in the corpus, and adding edge weights to G allows the interpolation scheme to
enforce that constraint. There is, however, an important disadvantage to a probabilistic
scheme like this: choosing only the most-likely moves may engender clich�e.

Fine-grained, jointwise interpolation with log-likelihood edge weights, as described in
the previous paragraph, is theoretically a good solution for the problem at hand, but its
computational complexity is prohibitive. For example, if each joint can be in one of only
ten possible orientations, then G could contain O(1088) vertices. One way to manage
this complexity is to use a hierarchical data structure that exploits the structure and
physics of the human body | the notion, for example, that the position of the wrist
strongly a�ects the position of the �ngers but has little e�ect on the toes. The physical
structure of the human body is depicted graphically in part (a) of �gure 6. We use a
tree to represent this structure in the form of dependency relationships between joints

make sense to store the sound associated with each position si and then reproduce it whenever that
position appears in the variation. On the other hand, the sound and movement genres may operate
under wholly di�erent sets of constraints, in which case this would create nonsense sound | e.g.,
reordering the syllables of a word.
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(a) (b)

Figure 6: A hierarchical representation of the human body that helps mitigate the
complexity of jointwise interpolation. The shaded ellipse is the head; toes and �ngers
have been omitted for clarity. Part (a) depicts the body and its major joints. Bilateral
joints are identi�ed with subscripts according to the side of the body on which they
fall (e.g., right and left elbows er and el). Part (b) shows the dependencies induced by
gravity and topology: for instance, the position of the pelvis inuences the positions of
both hips hr and hl and the lumbar spine l, but the right and left ankles kr and kl do
not directly inuence one another.
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(a) (b)

Figure 7: Capturing typical joint movement patterns: each joint is associated with a
graph that contains a vertex for each of its observed states, together with a set of edges
that de�ne how that joint reacts to movements of its parent. The graph in part (a)
reects the patterns in how the lumbar spine joint l reacts to movements of its parent
joint p, the pelvis. To manage graph complexity, we aggregate topologically identical
edges and attach a progression/probability table to each, as shown in part (b).

| a type of inuence diagram[12] | as shown in part (b) of the �gure. The pelvis is
the root of this tree; three branches lead from this root to nodes corresponding to the
right thigh/hip joint, the left thigh/hip joint, and a joint representing the lower spine7.
Each hip joint is the parent node to a knee (n), and so on.

Associated with each node of this tree is a graph that contains a vertex for each
observed state of the corresponding joint, together with a set of edges that de�ne how
that joint reacts to movements of its parent joint. Figure 7(a), for instance, shows the
graph associated with the lumbar-spine node l in a tree built from a corpus where both
that joint and its parent (the pelvis) can take on two orientations: fl1; l2g and fp1; p2g
respectively. If the lumbar spine is in position l1 and the pelvis moves from p1 to p2,
then the lumbar spine will either stay in position l1 (with probability 0.2) or move to
position l2 (with probability 0.8). This �gure are highly simpli�ed; graphs constructed
from real movement sequences have many more edges. Figure 8, for example, shows
a directed graph representing how the shoulders move in a corpus of 38 short ballet
sequences. This corpus included 919 positions, and the patterns in their progressions,
as represented by the topology of the graph, are obviously quite complex. To handle
this complexity, our representation aggregates topologically identical edges and attaches
a progression/probability table to each, as shown in part (b) of �gure 7. Note that the
probabilities in each edge table may sum to values greater than 1.0, but the layered
structure of the graph requires that, given a transition pair from the parent pi ! pj
(written pi->pj in �gure 7), the sum of the weights of all pi ! pj-labeled edges leaving

7The sacrum and the �ve lumbar vertebrae are lumped together. This compromise sacri�ces back
suppleness for lowered complexity.
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Figure 8: In real movement sequences, movement graphs have many more edges than
the simpli�ed example shown in the previous �gure. The graph above, which represents
the movements of the shoulders, was constructed from a small corpus of 38 short ballet
sequences. The numbers in each state identify the discretized position of the joint. The
parent-joint probability tables | the boxed pi->pj information in the previous �gure
| have been omitted in the interests of clarity.
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any vertex must be 1.0.

Discretization of joint states was unexpectedly diÆcult. Simply discretizing the
quaternion values | that is, classifying all positions between, say,

right-shoulder, 1, 1, 0, 1

and

right-shoulder, 1, 1, 0.2, 1

as an equivalence class and representing them in the algorithms as a single posture |
produced visibly awkward animations. The human visual perception system appears to
be very sensitive to small variations in quaternion coeÆcients: any change in a single
coeÆcient seems to violate the \motif" of the motion. The same problem arose when
we attempted a physically more-realistic discretization by transforming quaternion data
to Euler angles and then discretizing �; �; and  instead. The solution on which we
eventually settled uses a discretization library that was created by hand by an expert
dancer.

Many of the techniques in this section, as well as others on which we are currently
working, were inspired by solutions to similar problems that arise in molecular biology
(e.g., DNA sequence analysis) and computational linguistics (e.g., learning a grammar
from a corpus and then using it to construct meaningful sentences). For example, one
can view the hierarchical graph structure in �gures 7 and 8 as a set of �rst-order Markov
chains, in which a single chain represents the orientation of each joint in the body. Each
Markov chain contains a di�erent set of state transitions and transition probabilities for
each transition pair in the joint's parent node.

4 Results

Figure 9 shows the simple ballet jump sequence of �gure 1, a chaotic variation of that
jump generated with the Lorenz system, and a smoothed version of that variation. The
sequence shown in the middle row of �gure 9 was derived from the original using the
chaotic symbol-sequence reordering scheme described in section 2. An abrupt transition
is visible between the third and fourth moves of this variation; the corpus-based graph-
theoretic interpolation scheme described in section 3 inserted two new moves to produce
the smoothed sequence shown at the bottom of the �gure. Note that the inserted moves
de�ne a very natural way to move between the two body positions that frame the abrupt
transition.

While it is clear from the �gure that the jump positions are indeed shu�ed and
that the interpolated version is indeed smoother, it is impossible to appreciate these
results from a static portrayal of such a short sequence; please see the web site listed at
the end of the introduction for a variety of animated variations | including the jump
shown in �gures 1 and 9, a popular dance progression (the macarena), a martial arts
\form" drawn from the discipline of kenpo karate, and a medley of all three of these

14



4 4

Figure 9: A ballet jump: the original sequence (above), a chaotic variation on that
original (middle), and an interpolated version of that variation (below). The moves
identi�ed by arrows in the lower sequence were inserted by the interpolation scheme to
smooth an abrupt transition between the third and fourth moves in the chaotic variation
above it.
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movement sequences. Variations were constructed on each of these four pieces using two
di�erent chaotic systems | Lorenz and R�ossler | in order to explore how the attractor
geometry a�ects the variation. Loosely speaking, variations resemble the originals with
some shu�ing of coherent subsequences; this is most obvious in the medley, where the
variation clearly shifts back and forth between genres. Where there is an obvious genre,
such as the karate sequence, martial arts experts report that the variations �t that
genre. In fact, the point of using this sequence was the distinct, well-de�ned structure
of individual martial arts genres, and the (achieved) goal was to determine whether
variations generated on kenpo karate sequences still looked like kenpo | and not like
shokotan karate or tae kwon do8. We also present randomly shu�ed versions of each
of the four pieces in order to demonstrate, by contrast, how much structure is retained
by the chaotic variation scheme. Perhaps the most telling comparison is between the
chaotic and randomized versions of the medley; segments of the individual dances are
clearly visible in the former and all but absent in the latter. (What structure is present
comes from the Life Forms animation tool, which performs a spline-based interpolation
between posture snapshots in order to �ll in frames in the movie.)

These results set o� a variety of interesting questions. For instance, a shorter move-
ment sequence implies larger cells and hence a \coarser" symbolic dynamics; this has
interesting e�ects on how smoothly the cell itinerary of �(x0) moves and shifts along
the original attractor, with corresponding implications for the animation and its resem-
blance to the original piece. The attractor geometry plays a mathematically and visually
obvious role in the character of the variation; note the di�erences between the Lorenz
and R�ossler pieces on the web site. It appears that the latter contains longer coherent
original subsequences than the former, which is consistent with the M�obius-band nature
of the R�ossler attractor, in comparison to the bilaterally symmetric two-lobed Lorenz
geometry. We are in the process of analyzing the two pieces statistically in order to de-
termine whether these apparent patterns are real or illusory. Finally, the implementation
allows for arbitrary body topologies, so this scheme is by no means limited to human

motion sequences | though one would, of course, have to adapt the quaternion-based
symbol to the topology of the limbs and joints that are involved.

Besides the animations and the associated explanation and analysis, the web site also
contains a simple animation package and the symbol-sequence reordering code itself. We
encourage the readers (and their students) to create new animations and/or try di�erent
ODE systems, initial conditions, and so on. New animations are particularly useful
and extremely welcome; the dance world has not yet embraced the notion of computer
animation, so the current critical limitation in this project is the inadequacy of the
existing corpus | on which our interpolation scheme depends9.

8These genres use many of the same postures as kenpo, but in very di�erent sequences.
9The chaotic symbol-sequence reordering code does not yet handle center-of-mass interpolation

smoothly, so movement sequences where the body moves from place to place will appear choppy. We
are currently working on this, but the issues involved | kinesiology, in particular | make it quite
diÆcult to solve.
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5 Conclusion

Evaluation of these results is necessarily somewhat subjective. We have shown these
animations to hundreds of people, including dozens of dancers and martial artists. The
consensus is that the variations not only resemble the original pieces, but also are in
some sense pleasing to the eye. They are both di�erent from the originals and faithful
to the dynamics of the genre: there are no jarring transitions or out-of-character moves.
This is a non-trivial accomplishment. A previous attempt to use mathematics to gener-
ate choreographic variations | a subsequence randomization scheme introduced by the
now well-known choreographer Merce Cunningham in the 1960s | met with a strongly
negative reception in the dance world10.

From a scienti�c viewpoint, this scheme is interesting for several reasons. It involves
a formal (albeit unusual) application of symbolic dynamics, the properties of chaotic
attractors, and rigid-body mechanics: the partition for the symbolic dynamics is gener-
ated automatically using computational geometry techniques and the natural order of
the movement sequence and the symbol set relies on a representational device invented
by Hamilton himself. By applying methods from graph theory, statistics, and com-
putational linguistics to a corpus of movement sequences from a particular genre, the
interpolation scheme described here smooths awkward transitions in a physically and

stylistically coherent fashion. Last, but certainly not least, showing these results in a
classroom is an enormously e�ective way to motivate students to learn the mathematics
of rigid-body dynamics, chaos, and context-dependent grammars.
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