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Abstract. The computer program pret automatically constructs math-
ematical models of physical systems. A critical part of this task is au-
tomating the processing of sensor data. pret's intelligent data analyzer
uses geometric reasoning to infer qualitative information from quantita-
tive data; if critical variables are either unknown or cannot be measured,
it uses delay-coordinate embedding to reconstruct the internal dynamics
from the external sensor measurements. Successful modeling results for
two sensor-equipped systems, a driven pendulum and a radio-controlled
car, demonstrate the e�ectiveness of these techniques.

1 Introduction

Constructing a model that a scientist or engineer can use to better understand or

control a physical system typically requires analysis of the input/output behav-

ior of that system. Di�erent applications require di�erent types of models; each

type calls upon di�erent measurement and reasoning techniques. In particular,

formulating an internal ordinary di�erential equation (ODE) model from exter-

nal observations of a system is known as system identi�cation (SID). SID has

two phases, as shown in Figure 1: structural identi�cation, in which the general

form of the equations that govern the unknown dynamics is determined, and

parameter estimation, in which coeÆcient values that match that model to the

actual sensor data are found.
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Fig. 1. System identi�cation phases. Structural identi�cation yields the general form

of the model; in parameter estimation, values for the unknown coeÆcients in that

model are determined. The pret modeling tool automates this process using arti�cial

intelligence techniques.

One of the aims of qualitative reasoning (QR)[10, 26], a branch of arti�cial

intelligence (AI), is to automate the modeling process by abstracting knowledge,

information, and reasoning to a qualitative level. The computer program pret[4]

is an example of a QR modeling tool. It automates the SID process that is

diagrammed in Figure 1 by building an AI layer around a set of traditional SID

techniques. This layer automates the high-level stages of the modeling process

that are normally performed by a human expert. pret combines several forms of

QR via a special �rst-order logic inference system[23, 24] to intelligently assess

the task at hand; it then reasons from that information to automatically choose,

invoke, and interpret the results of appropriate lower-level techniques.

Di�erential equations are perhaps the most broadly applicable, well formal-

ized, and powerful class of models in current use. Most physical systems that are

of interest to scientists and engineers are dynamic: the values of their important

properties | the rotation rate of a pulsar or the heat ow in a power plant |

change with time. ODEs are perfectly suited to capture this kind of behavior. If

the physics depends on multiple variables (i.e., spatiotemporal dynamics), partial

di�erential equations (PDEs) | which are mathematically much more diÆcult



and far less well-understood than ODEs | are the model of choice. Though

PDEs are more general, pret works with ODE models because they are both

broadly applicable and also supported by a well-developed, highly formalized

body of mathematical knowledge that applies in any domain, whether it be ce-

lestial mechanics, chemical plant design, or population biology. These reasoning

rules allow additional knowledge to be inferred about an ODE and/or the sys-

tem it models. For example, if a system is known to be autonomous, its model

cannot explicitly contain the variable time; if a system oscillates, the imaginary

parts of at least one pair of the model's roots must be nonzero. pret exploits

these types of rules in order to generate and test ODE models.

pret (Figure 2) models linear and nonlinear systems by assembling combi-
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Fig. 2. The pret modeling tool automates the system identi�cation process, using

domain theory to build ODE models from user speci�cations and ODE theory to check

those models against observations like sensor data. The topic of this paper is pret's

intelligent sensor data analysis module.

nations of user-speci�ed and automatically generated model fragments into an

ODE system that both �ts the domain physics and matches a given set of qual-

itative and quantitative observations. When human experts perform this task,

they make use of a variety of well-established modeling techniques; their rea-

soning about a given physical system and possible candidate models takes place



at an abstract level �rst and resorts to more detailed level later in the model-

ing process. pret's goal is to mimic this strategy and attempt to �nd a model

quickly | with no more detailed reasoning than necessary. Its basic strategy is

a two-phase generate-and-test procedure. The generate phase | wherein models

are constructed from hypotheses | necessarily depends on the domain involved;

in mechanics, for instance, one might synthesize a model by using Newton's

laws to combine force terms; in electronics, one might use Kirchho�'s laws to

sum voltages in a loop or currents in a cutset. pret's domain theory reason-

ing emulates this process; model generation in each domain is governed by one

or two simple, powerful, domain-speci�c hypothesis combination rules, such as

�< force > = 0 in the domain mechanics. The test phase, wherein a candi-

date model is checked against the known observations, is guided by the (much

larger and domain independent) ODE theory described at the end of the previ-

ous paragraph. The intelligent data analysis strategies described in this paper,

which automatically process the sensor information from the data acquisition

link shown in Figure 2, are part of the test phase.

During the test phase, pret checks the candidate model against a set of

user-speci�ed observations of the target system. pret's special �rst-order logic-

based inference engine[24] uses these observations | which take on various ab-

straction levels, ranging from low-level numeric data to high-level qualitative

descriptions of the system's behavior | to rule out incorrect models as quickly

and cheaply as possible. Properly processed (in tandem with the ODE theory),

those observations let the engine eliminate large classes of models in a purely

qualitative manner, guiding pret eÆciently through the exponentially complex

search space of hypothesis combinations. Two special mechanisms allow this in-

ference engine to achieve this form of high-level-�rst reasoning: abstraction levels

and meta-level control. The former are static annotations to ODE rules that are

used to direct the search for an inconsistency toward a quick, abstract proof.

For example, qualitative reasoning rules are assigned a more-abstract level than

rules that encode numerical reasoning. Meta-level control dynamically guides the



search toward a cheap and quick proof of contradiction. Rules that are likely to

lead to such a contradiction are chosen before other rules, and subgoals that will

fail quickly are evaluated before other subgoals. Whereas abstraction levels are

static, meta-level control guides the search relative to the current state of the

inference engine. See [13, 24] for more details on the issues and implementation

of the inference engine.

The abstraction level of an observation necessarily dictates both how it is

processed and the breadth of its implications; Qualitative observations, such as

\the system is linear," play a more wide-ranging role in the model test process

than a highly situation-speci�c sensor data set (e.g., one that was gathered at

a particular drive frequency). For instance, if the target system is known to be

damped, pret can use algebraic reasoning about the divergence of ODEs to

quickly and cheaply discard any candidate model that is conservative. When

observations involve numeric data, however, the conclusions drawn from the in-

ference process are typically less general. In order to leverage these kinds of

observations as much as possible, pret incorporates a variety of intelligent data

analysis techniques, which are the focus of this paper. pret's sensor data an-

alyzer can, for instance, use geometric reasoning to distill qualitative features

from a data set and recognize that a sensor time series is converging to a �xed

point; from this, the inference engine can conclude that the system is damped

and thus that the divergence of any successful model must be negative. QR

techniques like algebraic and geometric reasoning are far less computationally

expensive than techniques that involve the processing of numbers; also, because

of their inherent abstraction, they apply to wider problem classes. This applica-

tion breadth and expense reduction are particularly critical here because of the

complexity of pret's search spaces.

pret's capabilities have been demonstrated in a variety of simulated and real

systems. For example, control of a commercially acquired radio-controlled (R/C)

car used at the University of British Columbia could not be attained without an

adequate model of the device. pret has been successfully applied to this problem;



its inputs included a time series of the car's position and heading, the UBC

analyst's set of known model fragments, and mathematical formalizations of a

few of his qualitative observations (e.g. \it pulls to the left" or \we assume there

is a simple form of frictional damping"). pret examined di�erent combinations

of the model fragments during its structural identi�cation stage, settled on one

that matched the qualitative observations, and estimated parameters for this

model using its nonlinear parameter estimation reasoner[3]. The results were

interesting: pret's model was correct | i.e., it met the speci�cation | but it

did not match the analyst's intuition. The problem was that he had omitted a

few crucial observations (e.g., \it started from rest"), and pret, of course, only

models features that are made explicit in the speci�cation. The discrepancy was

useful in a very powerful way: it allowed a human analyst to identify what was

missing from his description of the problem and to add the appropriate piece

of knowledge to the speci�cation. The R/C car modeling example is covered in

much more depth in [3].

This paper describes a collection of automatic data analysis methods, such

as the geometric and algebraic reasoning techniques mentioned two paragraphs

above, that are speci�cally tailored to process sensor data and generate the kinds

of information that pret's inference engine can exploit to build e�ective mod-

els of systems like the R/C car. pret's intelligent data analysis module, which

instantiates these methods, combines ideas from a variety of very di�erent �elds

| AI, control theory, nonlinear dynamics, and numerical analysis. An important

and diÆcult part of its task is to e�ectively automate decisions about when to

use which techniques and in what sequence, how to set up the invocations of

the appropriate code modules, and how to interpret the results. The core of this

intelligent data analyzer is based on Hsu's cell-to-cell mapping paradigm for dy-

namics analysis[14]. This method requires a full state-space trajectory, however,

and fully observable systems2 are rare in engineering practice. Sensor data are

almost always incomplete and/or noisy; worse yet, the true state variables may

2 those whose state variables are all known and measurable



not even be known to the user. The partial solutions that we propose to this

observer problem are based on delay-coordinate embedding[1]. Acting together,

geometric reasoning and delay-coordinate embedding allow this intelligent data

analyzer to infer, from a quantitative data set, exactly the kinds of qualitative

information that pret can exploit to quickly verify or discard models.

The next two sections describe this intelligent data analysis module, �rst

covering the geometric reasoning that is used to distill qualitative information

out of a quantitative data set, and then describing how delay-coordinate em-

bedding techniques can be used to infer knowledge about unobserved state vari-

ables. Following these background sections, we present an example pret run

on a parametrically driven pendulum, highlighting the role that the intelligent

data analysis techniques play in the successful modeling of the system. We then

discuss the results and their implications, describe pret's relationship to other

work, and summarize.

2 Distilling Qualitative Information from Quantitative

Data

The intelligent data analyzer's geometric reasoner distills qualitative properties

from a numeric data set using phase-portrait analysis, asymptote recognition,

and other simple computer-vision techniques. Dynamical systems practitioners

typically reason about phase portraits, rather than time series, because the

phase-space representation | which suppresses time | brings out the quali-

tative properties of the system under examination. For example, recognizing a

damped oscillation in a time series from a linear system requires detailed exam-

ination of the amplitude decay rate of and the phase shift between two decaying

sinusoidal time-domain signals. The same behavior manifests in a much more

obvious form | a single symmetric spiral | on a phase portrait. The types of

automated phase-portrait analysis[2, 27, 28] techniques used here are designed

to capture this kind of information and generate the corresponding qualitative

descriptions (e.g., damped-oscillation). This kind of information is perfectly



suited for use by pret's inference engine; its qualitative nature allows the en-

gine to verify or discard large classes of candidate models. For example, if sensor

measurements of a state variable indicate that it is undergoing a damped oscil-

lation, the inference engine can immediately rule out all ODE models that are

unstable, critically damped, or overdamped3.

pret's geometric reasoner is based on the cell-to-cell mapping formalism of

Hsu[14, 15], which discretizes a set of n-dimensional state vectors onto an n-di-

mensional mesh of uniform boxes or cells. In Figure 3, for example, the circular

trajectory | a sequence of two-vectors of oating-point numbers measured by

a �nite-precision sensor | can be represented as the cell sequence

[:::(0; 0)(1; 0)(2; 0)(3; 0)(4; 0)(4; 1)(4; 2)(4; 3)(4; 4)(3; 4):::]

Because multiple trajectory points are mapped into each cell, this discretized
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Fig. 3. Identifying a limit cycle using simple cell mapping

representation of the dynamics is signi�cantly more compact than the original

series of oating-point numbers and therefore much easier to work with. This

3 Stability analysis of a linear ODE involves �nding the roots of its characteristic

polynomial (e.g., as2 + bs+ c = 0 for the ODE a�x+ b _x+ c = 0). Only if those roots

are imaginary can the system oscillate; only if their real parts are negative is the

oscillation damped.



is particularly important when complex systems are involved, as the number of

cells in the grid grows exponentially with the number of dimensions4. Though

the approximate nature of this representation does abstract away much detailed

information about the dynamics, it preserves many of its important invariant

properties; see, e.g., Hao[12] or Lind & Marcus[20] for more details. This point

is crucial to the phase-portrait analysis methods used here; it means that con-

clusions drawn from the discretized trajectory are also true of the real trajectory

| that is, a repeating sequence of cells in the former, as in Figure 3, implies that

the true dynamics are on a limit cycle. In this manner, low-level, �nite-precision

numerical data can be converted into a high-level qualitative classi�cation (here,

a limit-cycle fact) that triggers the use of associated ODE rules in pret's

inference engine. Its coarse-grained nature gives this scheme some important

limitations, both subtle and obvious, many of which are described below. Inter-

estingly enough, some of these apparent limitations can actually be turned to

pret's advantage.

Given the cell-dynamics formalism described in the previous paragraph, the

dynamics of a discretized trajectory can be quickly and qualitatively classi�ed us-

ing simple geometric heuristics. Some of these classi�cation heuristics are trivial

(e.g. determining if the trajectory exits the mesh), but detecting limit cycles or

oscillations requires subtler pattern recognition techniques. Below are several of

the geometric reasoner's dynamics classi�cations, the corresponding heuristics,

and some associated implications for the ODE model:

{ fixed-cell: when a trajectory relaxes to a single cell and remains within

that cell for a �xed percentage of its total lifetime. This can, for instance, be

used to recognize when a second-order linear system is overdamped. Appro-

priate mesh geometry choices can extend this method to asymptote recog-

nition.

{ limit-cycle: when the trajectory contains a �nite, repeating sequence of

4 The example of Figure 3 is two-dimensional, but the cell dynamics formalism gener-

alizes smoothly to arbitrary dimension.



cells. These patterns are identi�ed by discarding any transients and search-

ing for periodic mapping sequences; they indicate that the system is either

conservative or externally driven (nonautonomous)5.

{ damped-oscillation: when a trajectory enters a �xed cell via a decaying

oscillation. This pattern is detected by recognition of an inward spiral; such

dynamics can indicate, for instance, that a system is underdamped and thus

that at least one pair of the model's natural frequencies must be complex.

{ constant: when a state variable does not change over the duration of the

trajectory. This computation involves a simple serial scan on each mesh axis;

its results are particularly useful to pret because they have wide-ranging

implications about the order of the system.

{ sink-cell: when a trajectory exits the mesh. This information is used to

identify unstable trajectories.

Many other classi�cations are possible (e.g., chaotic); some are less useful to

pret than others | because their implications either are more limited in range

or require processing at a less-abstract reasoning level.

The cell size, mesh boundary, and trajectory length a�ect the validity and

eÆciency of the cell-dynamics classi�cation. Among other things, a small limit

cycle may be classi�ed as a �xed point, and behavior outside the mesh will not

be classi�ed at all. All of these discretization and boundary e�ects are not, in

fact, problems; rather, they actually allow pret to represent and work with the

abstraction levels implied by the �nite range and resolution that are such fun-

damental features of a modeling hierarchy | e.g., to avoid including saturation

and crossover distortion e�ects when asked to \model the small-signal behavior

of the op amp to within 10mV." Speci�cally, we use the range and resolution

information from user instructions to set up the mesh boundary and cell size,

assuring that behavior outside the range or below the resolution is not modeled.

5 Some authors de�ne the terms \limit cycle" and \periodic orbit" di�erently; we

consider them to be equivalent.



3 Delay-Coordinate Methods for Observer Theory

If all of a system's state variables are identi�ed and measured, the geometric

reasoning techniques described in the previous section can be applied directly

to the sensor data. A fully observable system like this, however, is rare in engi-

neering practice; as a rule, many | often, most | of the state variables either

are physically inaccessible or cannot be measured with available sensors. Worse

yet, the true state variables may not be known to the user; temperature, for

instance, can play an important and often unanticipated role in the modeling of

an electronic circuit. This is part of control theory's observer problem: how to (1)

identify the internal state variables of a system and (2) infer their values from

the signals that can be observed. The arsenal of time-series analysis methods

developed by the nonlinear dynamics community in the past decade[1] provides

powerful solutions to both parts of this problem. This section describes the two

methods, Pineda-Sommerer (P-S)[22] and false near neighbor (FNN)[18], that

pret uses to infer the dimension of the internal system dynamics from a time

series measured by a single output sensor6.

Both P-S and FNN are based on delay-coordinate embedding, wherein one

constructsm-dimensional reconstruction-space vectors fromm time-delayed sam-

ples of the sensor data. For example, if the time series in Figure 4 is embedded

in three dimensions (m = 3) with a delay of 0.2, the �rst two points in the

reconstruction-space trajectory are (32.0 22.0 19.0) and (28.0 16.0 23.0). Sam-

pling a single system state variable is equivalent to projecting a d-dimensional

state-space dynamics down onto one axis; embedding is akin to \unfolding" such

a projection, albeit on di�erent axes. The central theorem relating such embed-

dings to the underlying dynamics was suggested in [25] and proved in [21]; in-

formally, it states that given enough dimensions (m) and the right delay (�), the

reconstruction-space dynamics and the true (unobserved) state-space dynam-

6 Techniques like divided di�erences can, in theory, be used to derive velocities from

position data; in practice, however, these methods often fail because the associated

arithmetic magni�es sensor error.
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Fig. 4. An example delay-coordinate embedding with an embedding dimension of three

and a delay of 0.2.

ics are topologically identical7. This is an extremely powerful theorem: it lets

us analyze the underlying dynamics using only the output of a single sensor. In

particular, many properties of the dynamics, such as dimension (i.e., �xed point,

limit cycle, chaotic attractor, etc.), are preserved by di�eomorphisms; if they are

present in the embedding, they exist in the underlying dynamics as well. There

are, of course, some important caveats, and the diÆculties that they pose are the

source of most of the e�ort and subtlety in these types of methods. Speci�cally,

in order to embed a data set, one needsm and � , and neither of these parameters

can be measured or derived from the data set, either directly or indirectly, so

algorithms rely on numeric and geometric heuristics to estimate them.

The Pineda-Sommerer algorithm creates such estimates; it takes a time series

and returns the delay � and a variety of di�erent estimates of the dimension m.

The procedure has three major steps: it estimates � using the mutual informa-

tion function, uses that estimated value �0 to compute a temporary embedding

dimension E, and uses E and �0 to compute the generalized dimensions Dq, also

known as \fractal dimensions." The standard algorithm for computing the frac-

tal dimension of a trajectory, loosely described, is to discretize state space into

�-boxes, count the number of boxes occupied by the trajectory, and let � ! 0.

7 More formally, the reconstruction-space and state-space trajectories are di�eomor-

phic i� m � 2d+ 1, where d is the true dimension of the system.



Generalized dimensions are de�ned as

Dq =
1

q � 1
lim sup

�!0

log
P

i p
q
i

log �
(1)

where pi is some measure of the trajectory on box i. D0; D1, and D2 are known,

respectively, as the capacity, information, and correlation dimensions; all three

are useful to pret as estimates of the number of state variables in the system.

The actual details of the P-S algorithm are quite involved; we will only present

a qualitative description:

� Construct 1- and 2-embeddings of the data for a range of �s and compute the

saturation dimension D� of each; the �rst minimum in this function is �0.

The D� computation entails:

� Computing the information dimension D1 for a range of embedding di-

mensions E and identifying the saturation point of this curve, which

occurs at D�. The D1 computation entails:

� Embedding the data in E-dimensional space, dividing that space into

E-cubes that are � on a side, and computing D1 using equation (1)

with q = 1.

Ideally, of course, one lets � ! 0 in the third step, but oating-point arith-

metic and computational complexity place obvious limits on this; instead, one

repeats the calculation for a range of �s and �nds the power-law asymptote in

the middle of the log-log plot of dimension versus �. P-S incorporates an inge-

nious complexity-reduction technique: the �s are chosen to be of the form 2�k

for integers k and the data are integerized; this allows most of the mathemati-

cal operations to proceed at the bit level and vastly accelerates the algorithm.

To increase the precision of this computation, we have also implemented an

arbitrary-length virtual integer package that facilitates the integerization.

The false near neighbor algorithm is far simpler than P-S. It takes a � and a

time series8 and returns m. FNN is based on the observation that neighboring

8 We run P-S �rst and then use its � in FNN. Other methods, such as autocorrelation[1]

can also be used to estimate � .



points may in reality be projections of points that are very far apart, as shown

in Figure 5. The algorithm starts with m = 1, �nds each point's nearest neigh-

C

x

y

A

B

Fig. 5. The geometric basis of the FNN algorithm: the points labeled A and B are true

near neighbors in the x-projection, while A and C are false near neighbors.

bor, and then re-embeds the data with m = 2. If the point separations change

abruptly between the 1- and 2-embeddings, then the points were false neighbors

(like A and C in the x-projection of Figure 5). The FNN algorithm continues

adding dimensions until an acceptably small9 number of false near neighbors

remain, and returns the last m-value as the estimated dimension. We use a K-D

tree implementation[11] to reduce the complexity of the nearest-neighbor step

from O(N2) to O(N logN), where N is the length of the time series.

As both FNN and P-S are based on heuristics, their estimates of the embed-

ding dimension m are not necessarily the same. Since both algorithms provide

conservative estimates, pret chooses the minimum of the two results as an upper

bound for the dimension of the model.

9 An algorithm that removes all false near neighbors can be unduly sensitive to noise.



4 Status and Discussion

In order to demonstrate the functions of pret's intelligent data analysis module,

this section presents a real-world modeling example: a pret run on a parametri-

cally driven pendulum | a solid aluminum arm that rotates freely on a standard

bearing. The pendulum vertex is driven up and down in a sinusoidal pattern by a

motor and a simple linkage. An actuator controls the pendulum's drive frequency

and a sensor (an optical encoder) measures its angular position. The behavior

of this apparently simple device is really quite complex and interesting: for low

drive frequencies, it has a single stable �xed point, but as the drive frequency

is raised, the attractor undergoes a series of bifurcations. In the sensor data,

this manifests as interleaved chaotic and periodic regimes[6]. This system is also

interesting from a modeling standpoint; at high resolutions, the backlash in the

bearings invalidates the standard textbook model. Modeling these e�ects is crit-

ical, for instance, to the accurate deployment of the space shuttle's manipulator

arm[16].

Figure 6 shows how a user instructs pret to build an ODE model of this sys-

tem. The full details and implications of both input and output syntax (and the

GUI that facilitates entry of the find-model call) are covered elsewhere[4, 13];

here, we will concentrate on the parts of the call that pertain to the intelligent

data analyzer. The �rst line of the find-model call speci�es the domain of the

problem and causes the program to instantiate the associated domain theory

{ here, a single rule specifying that forces at a point sum to zero. Recall that

pret uses domain theory only to combine hypotheses into models, so this the-

ory is far more compact than the ODE theory used to test candidate models

against observations. The point of this is to make it easy for a user to extend

pret to new domains. The next two lines of Figure 6 identify <theta> as a

state variable that is a coordinate associated with a point. The remainder of the

find-model call consists of three types of information about the target system:

specifications, hypotheses, and observations. specifications prescribe

resolutions and ranges to and over which the model is required to be valid.



(find-model

(domain mechanics)

(state-variables <theta>)

(point-coordinates <theta>)

(hypotheses (<force> (* A1 (sin <theta>)))

(<force> (* A2 (deriv <theta>)))

(<force> (* A3 (cos (* A4 <time>))))

(<force> (* A5 (deriv (deriv <theta>)))) )

(observations (nonautonomous)

(numeric (<time> <theta>) ((0.00 0.812) ... )) )

(specifications (<theta> absolute-resolution 0.5)

(<theta> range -1.570796327 1.570796327) ))

Fig. 6. pret's input: �nding an ODE model of the driven pendulum. <theta> is the

bob angle.

Hypotheses are ODE fragments from which pret constructs the model. If the

user's hypotheses are inadequate, pret uses power-series techniques, the stan-

dard technique to which an engineer would resort in this situation, to generate

ODE fragments from scratch. The search space is exponentially complex in the

number of hypotheses, however, so blind | and rapid | power-series enumera-

tion is far less desirable than a hypothesis list intelligently selected by a user.

Observations range from the purely qualitative to the purely quantitative.

The former are a powerful target for QR techniques: using a qualitative obser-

vation, pret's inference engine can quickly discard broad classes of candidate

models. Moreover, to a human expert, making qualitative observations is a nat-

ural part of the modeling process, so this provides a smooth user interface.

Quantitative observations, the speci�c focus of the methods described in this

paper, are typically sensor measurements; the source of the numeric observation

in this find-model call, for instance, is the optical encoder on the pendulum

shaft. Direct inferences from such observations are computationally expensive



and of limited utility, but qualitative features extracted from them, as described

below, can be leveraged in an abstract and powerful manner by the inference

engine.

As a �rst step in the modeling process, pret's intelligent data analysis rea-

soner distills a variety of qualitative information from the numeric observation

in the find-model call, which is shown in part (a) of Figure 7. It �rst recon-
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Fig. 7. The numeric observation in the find-model call of the previous �gure. The

source of these measurements is an angle sensor on the pendulum shaft.

structs the dynamics, beginning by invoking P-S and FNN on this data set. The

former returns � = 15 and m = 5; the latter also returns m = 5, corroborating

the estimates, so pret embeds the data with those parameters, yielding the

reconstruction-space trajectory shown in part (b) of the �gure. Normally, the

reconstructed state space is discretized based upon user resolution and range

speci�cations; in Figure 7(c), for example, the cell size (0.5) is taken from the

�rst line of the specifications and the mesh boundary (��=2) from the second

line. In some cases, however, the classi�cation heuristics may alter the mesh pa-

rameters dynamically after the �rst pass (e.g., if a high-level ODE rule makes it

clear that the data are only valid in some subset of the region) in order to re�ne

its results. The limit-cycle heuristic in Section 2 recognizes the repeating se-



quences of cells in the discretized trajectory in part (c) of the �gure and classi�es

it as a limit cycle, so a limit-cycle fact is added to the list10 of observations

that a successful model must match:

{ (nonautonomous)

{ (numeric (<time> <theta>) ((0.00 0.812) ... )) )

{ (limit-cycle)

Note that automatic data analysis results may conict with the user's observa-

tions. In this case, pret assumes a higher con�dence level in the former.

Guided by this augmented observation set, pret searches the space of hypo-

thesis combinations. Inferences drawn from the two qualitative observations,

nonautonomous and limit-cycle | one speci�ed by the user and one inferred

automatically by the intelligent data analyzer | play a critical role in search-

space reduction. The nonautonomous fact lets pret's inference engine rule out

all models that have no <time>-dependent terms. The knowledge that the sys-

tem exhibits a limit cycle is equally powerful, since limit-cycle implies that

any linear model must be of at least second order. The core of the internal rep-

resentation of the main rule involved in this reasoning process is shown below:

(<- (constraint >= (var N) 2)

((linear-model)

(limit-cycle (var State-Var-1) (var State-Var-2))

(order (var State-Var-1) (var N))))

The rules are in the form (<- head body)11, where the conjunction of the formulae

in body implies head. State-Var-1 and State-Var-2 are logical variables that

are instantiated with the state variables (logical constants) �(t) and �(t � �)

of Figure 7 (b) and (c). This inference progression eventually guides pret to

the model A5
�� � A3 cos[A4t] � A1 sin � � A2

_� = 0. To determine values for

the unknown coeÆcients Ai, pret invokes its QR-based nonlinear parameter

10 This list is initially composed of the observations in the find-model call.
11 Variables in the formulae have the form (var symbol); they are (implicitly) univer-

sally quanti�ed.



estimation reasoner or nper[3], which returns Ai = (2:5; 98:0; 80:0; 9:0). With

these coeÆcient values, this model meets the requirements in the find-model

call, and so it is returned as pret's output.

This example has been simpli�ed for presentation purposes; for instance, we

loosened the resolution so as to avoid modeling the backlash in the bearings.

Normally, too, the find-model call would contain many more hypotheses and

qualitative observations. Most of the models constructed from the former are

quickly discarded using fast, inexpensive qualitative reasoning on the latter.

Note that the angular velocity state variable _� = ! was neither identi�ed

nor measured in this example. In the mechanics domain, pret automatically

generates a new state variable from the (symbolic) �rst derivative of each known

state variable12; here, this step led directly to !, e�ectively solving the identi�-

cation part of the observer problem. pret's nper solves the other part of this

problem: using a combination of qualitative reasoning and numerical analysis, it

automatically synthesizes starting values and initial search directions for a non-

linear least-squares solver routine that performs the coeÆcient/data regression.

If pret cannot build a successful model with � and !, it may be possible to

synthesize state variables from scratch using geometric reasoning on the data, as

embedded using the P-S and FNN results. This is a current focus of our research

e�ort.

The work described here is only the �rst half of the full input-output anal-

ysis that expert engineers apply to modeling problems; the next step in this

research is to incorporate actuators as well as sensors, as shown in Figure 8.

The overall goal of pret's automatic sensor/actuator interpretation and control

module, of which the intelligent data analyzer described here is a component,

is to autonomously generate and re�ne observations and hypotheses, possibly

even constructing and using observations that transcend the user's knowledge

of physics. There are a variety of potential problems with this; for instance,

the type and number of automatically generated hypotheses will have to be

12 more generally, the conjugate momentum for each generalized coordinate
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Fig. 8. The next step in pret's development. Automatic actuator control will be added

to the sensor data analysis techniques described in this paper, allowing pret to au-

tonomously generate, re�ne, and use new observations and hypotheses.

limited, lest the search space become unmanageable and/or the models over�t

the data. There are two fundamental limitations on automated actuator ma-

nipulation: controllability and reachability. The combined actuator and system

properties implicitly govern what kinds of experiments can be performed, and

pret's intelligent actuator control module will have to reason about these is-

sues explicitly and eÆciently. Automating the experimental observation process

gives rise to some interesting AI issues involving representation and reasoning:

how to identify and express the appropriate properties, and how to reason from

that information in order not only to decide what experiments are possible, but

also to determine which of those experiments yield the most powerful and useful

inferences.

5 Relationship to Related Work

Any type of reasoning about a dynamic system requires a model. The precise

form of that model is governed by the form of the reasoning: quantitative anal-

ysis requires exact equations, while a qualitative understanding can rest purely

on abstract notions like \y is a monotonic function of x." Automated modeling



tools reect this di�erence in approaches; the models that they produce span

the spectrum from precise mathematical descriptions of a system to highly ab-

stract representations of its physics. Most of the work in the very active AI/QR

modeling community, including the pret project, focuses on qualitative models.

These tools typically generalize a set of descriptions of the state into a higher-

level abstraction | qualitative states[5, 9]. Many QR modeling tools reason

about equations at an abstract level by combining model fragments. The ab-

straction levels and representations of these fragments vary; QSIM[19] models,

for instance, are qualitative di�erential equations (QDEs) like y = M+(x) (which

expresses that y is a monotonic function of x), whereas pret's models are the

mathematician's standard ODEs. Like many of the more physics-based model-

ing systems (e.g., QPT/QPE[8]), pret's inputs are expressed in the high-level

descriptive concepts and terms (e.g. linear, autonomous, etc.) that are typi-

cally used by scientists and engineers, and its internal reasoning is guided and

governed by the standard ideas of physics. pret also resembles these physics-

based modeling tools in how it orchestrates the data ow between the modeler

and the target system. Physical measurements, for example, often must be in-

terpreted with respect to a particular situation. QPT solves this problem by

concentrating on partitioning time-series data into logical segments[9]. While

these types of observations are important to pret, our research concentrates

more on the control-theoretic issues of this problem | attempting to observe

the important states of a system directly, identifying ways to observe them indi-

rectly, or changing sensor con�gurations. pret di�ers from systems like QPT in

several important ways; among other things, it does not focus on explanation and

causality (e.g. \What happens when a block is dropped from a table"). Perhaps

the most signi�cant di�erence between the work described here and the rest of

the QR modeling literature, however, is that pret takes a practical engineering

approach, working with noisy, incomplete sensor data from real-world systems

and attempting not to \discover" the underlying physics, but rather to �nd the

simplest ODE that can account for the given observations.



pret also shares goals, ideas, and tactics with several other �elds. In particu-

lar, it solves the same problems as traditional system identi�cation[17] | albeit

in an automated fashion | and therefore it rests upon many of the standard

methods found in basic control theory texts. Finally, it incorporates many of the

same ideas that appear in the data analysis literature[7], but it adds a layer of

AI techniques, such as symbolic data representation and logical inference, that

let it automate many of the higher-level reasoning tasks normally performed by

human experts13.

6 Conclusion

Geometric reasoning and delay-coordinate embedding allow the automatic data

analyzer described in this paper to infer, from a quantitative data set, exactly

the kinds of qualitative information that e�ectively guide the pret automated

system identi�cation tool through the complex search space of ordinary di�eren-

tial equation models. These methods provide a partial solution to the observer

problem, allowing pret to infer some internal system state variable properties

from incomplete output sensor data. Importantly, this intelligent data analyzer

automates many of the higher-level tasks normally performed by human experts

| the choice of what lower-level technique to use in a given phase of the SID

process, how to invoke that technique, how to interpret its results, and how to

leverage that information later in the process.

The ultimate goal of the pret project is a tool that can construct internal

ODE models of high-dimensional black-box systems in a variety of domains |

with minimal human guidance or forethought. Because of this, pret is designed

13
pret's task is far too complex for many traditional AI approaches; neither a state-

driven rule application strategy nor a left-right, depth-�rst theorem prover strategy

were powerful enough for the reasoning demanded by system identi�cation. In order

to address these complex reasoning issues, our framework provides meta-level control

constructs that allow control information to be expressed declaratively and separately

from the ODE theory. See [13] for more details.



for easy extension to new domains, and a current focus of our research is to

test this extensibility by solving modeling problems in visco-elastic materials

and electronic circuits. The initial results have been good, but some subtleties

remain: for instance, topology plays a critical role in descriptions of networks of

discrete components, and pret's syntax and reasoning do not yet handle these

requirements smoothly. Moreover, human experts in both of these domains |

and others | rely heavily on input/output studies such as impulse or frequency

response. Intelligent automation of pret's sensor interaction, the topic of this

paper, is only one part of this process; the details of the dynamics cannot be

truly exposed without an interactive input-output analysis, which will require

intelligent actuator manipulation as well.
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