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tionD. Hand and M. Berthold, eds.2nd edition, Springer-Verlag, 2002.Intelligent data analysis often requires one to extra
t meaningful 
on
lusions about a 
ompli
atedsystem using time-series data from a single sensor. If the system is linear, a wealth of well-established,powerful te
hniques is available to the analyst. If it is not, the problem is mu
h harder and one must resortto nonlinear dynami
s theory in order to infer useful information from the data. Either way, the problemis often 
ompli
ated by a simultaneous overabundan
e and la
k of data: megabytes of time-series dataabout the voltage output of a power substation, for instan
e, but no information about other importantquantities, su
h as the temperatures inside the transformers. Data-mining te
hniques[16℄ provide someuseful ways to deal su

essfully with the sheer volume of information that 
onstitutes one part of thisproblem. The se
ond part of the problem is mu
h harder. If the target system is highly 
omplex|say, anele
trome
hani
al devi
e whose dynami
s is governed by three metal blo
ks, two springs, a pulley, severalmagnets, and a battery|but only one of its important properties (e.g., the position of one of the masses)is sensor-a

essible, the data analysis pro
edure would appear to be fundamentally limited.Fig. 1 shows a simple example of the kind of problem that this 
hapter addresses: a me
hani
alspring/mass system and two time-series data sets gathered by sensors that measure the position andvelo
ity of the mass. This system is linear: it responds in proportion to 
hanges. Pulling the mass twi
eas far down, for instan
e, will eli
it an os
illation that is twi
e as large, not one that is 21:5 as large orlog 2 times as large. A pendulum, in 
ontrast, rea
ts nonlinearly: if it is hanging straight down, a small
hange in its angle will have little e�e
t, but if it is balan
ed at the inverted point, small 
hanges havelarge e�e
ts. This distin
tion is extremely important to s
ien
e in general and data analysis in parti
ular.If the system under examination is linear, data analysis is 
omparatively straightforward and the tools|the topi
 of se
tion 1 of this 
hapter|are well developed. One 
an 
hara
terize the data using statisti
s(mean, standard deviation, et
.), �t 
urves to them (fun
tional approximation), and plot various kinds ofgraphs to aid one's understanding of the behavior. If a more-detailed analysis is required, one typi
allyrepresents the system in an \input + transfer fun
tion ! output" manner using any of a wide variety oftime- or frequen
y-domain models. This kind of formalism admits a large 
olle
tion of powerful reasoningte
hniques, su
h as superposition and the notion of transforming ba
k and forth between the time andfrequen
y domains. The latter is parti
ularly powerful, as many signal pro
essing operations are mu
heasier in one domain than the other. _xx tk m xFigure 1: A simple example: A spring/mass system and a time series of the verti
al position and velo
ityof the mass, measured by two sensors 1



Nonlinear systems pose an important 
hallenge to intelligent data analysis. Not only are they ubiquitousin s
ien
e and engineering, but their mathemati
s is also vastly harder, and many standard time-seriesanalysis te
hniques simply do not apply to nonlinear problems. Chaoti
 systems, for instan
e, exhibitbroad-band behavior, whi
h makes many traditional signal pro
essing operations useless. One 
annotde
ompose 
haoti
 problems in the standard \input + transfer fun
tion ! output" manner, nor 
an onesimply low-pass �lter the data to remove noise, as the high-frequen
y 
omponents are essential elementsof the signal. The 
on
ept of a dis
rete set of spe
tral 
omponents does not make sense in many nonlinearproblems, so using transforms to move between time and frequen
y domains|a standard te
hnique thatlets one transform di�erential equations into algebrai
 ones and vi
e versa, making the former mu
h easierto work with|does not work. For these and related reasons, nonlinear dynami
ists es
hew most formsof spe
tral analysis. Be
ause they are soundly based in nonlinear dynami
s theory and rest �rmly on theformal de�nition of invariants, however, the analysis methods des
ribed in se
tion 2 of this 
hapter do notsu�er from the kinds of limitations that apply to traditional linear analysis methods.Another 
ommon 
ompli
ation in data analysis is observability: whether or not one has a

ess to enoughinformation to fully des
ribe the system. The spring/mass system in Fig. 1, for instan
e, has two statevariables|the position and velo
ity of the mass|and one must measure both of them in order to knowthe state of the system. (One 
an, to be sure, re
onstru
t velo
ity data from the position time series in theFigure using divided di�eren
es1, but that kind of operation magni�es noise and numeri
al error, and thusis impra
ti
al.) Delay-
oordinate embedding is one way to get around this problem; it lets one re
onstru
tthe internal dynami
s of a 
ompli
ated nonlinear system from a single time series|e.g. inferring usefulinformation about internal (and unmeasurable) transformer temperatures from their output voltages. There
onstru
tion produ
ed by delay-
oordinate embedding is not, of 
ourse, 
ompletely equivalent to theinternal dynami
s in all situations, or embedding would amount to a general solution to 
ontrol theory'sobserver problem: how to identify all of the internal state variables of a system and infer their valuesfrom the signals that 
an be observed. However, a single-sensor re
onstru
tion, if done right, 
an still beextremely useful be
ause its results are guaranteed to be topologi
ally (i.e., qualitatively) identi
al to theinternal dynami
s. This means that 
on
lusions drawn about the re
onstru
ted dynami
s are also trueof the internal dynami
s of the system inside the bla
k box. All of this is important for intelligent dataanalysis be
ause fully observable systems are rare in s
ien
e and engineering pra
ti
e; as a rule, many|often, most|of a system's state variables either are physi
ally ina

essible or 
annot be measured withavailable sensors. Worse yet, the true state variables may not be known to the user; temperature, forinstan
e, 
an play an important and often unanti
ipated role in the behavior of an ele
troni
 
ir
uit. Thedelay-
oordinate embedding methods 
overed in se
tion 3 of this 
hapter not only yield useful informationabout the behavior of the unmeasured variables, but also give some indi
ation of how many independentstate variables a
tually exist inside the bla
k box.Although the vast majority of natural and man-made systems is nonlinear, almost all textbook time-series analysis te
hniques are limited to linear systems. The obje
tive of this 
hapter is to present amore broadly useful arsenal of time-series analysis te
hniques|tools that 
an be applied to any system,linear or nonlinear. The te
hniques that have been developed by the nonlinear dynami
s 
ommunity overthe past de
ade play a leading role in this presentation, but many other 
ommunities have developeddi�erent approa
hes to nonlinear time-series analysis. One of the more famous is Tukey's \exploratorydata analysis," a sleuthing approa
h that emphasizes (and supports) visual examination over blind, brute-for
e digestion of data into statisti
s and regression 
urves[50℄. Some of the more-re
ent developments inthis �eld attempt to aid|or even augment|the analyst's abilities in un
onventional ways, ranging from3D virtual-reality displays to hapti
s (representing the data as a tou
h pattern, whi
h has been proposedfor reading mammograms[30℄) or data soni�
ation.The se
tions that follow are organized as follows. Se
tion 1 qui
kly reviews some of the traditionalmethods that apply to linear systems. Se
tion 2 
overs the bare essentials of dynami
al systems theory andpra
ti
e, with a spe
i�
 emphasis on how those te
hniques are useful in IDA appli
ations. This materialforms the basis of the general theory of dynami
s that applies to any system, linear or nonlinear. If all of theimportant properties of the target system 
an be identi�ed and measured and the data are basi
ally noise-1e.g., dividing the di�eren
e between su

essive positions by the time interval between the measurements2
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Figure 2: The \input + transfer fun
tion! output" framework of traditional signal pro
essing. Top: timedomain. Bottom: frequen
y domain.free, these te
hniques, alone, 
an provide a very good solution to many nonlinear data-analysis problems. Ifthere are fewer sensors than state variables, however, one must 
all upon the methods des
ribed in se
tion 3in order to re
onstru
t the dynami
s before one 
an apply the se
tion 2 methods. Noise is a mu
h morediÆ
ult problem. There exist te
hniques that \�lter" nonlinear time-series data, turning the nonlinearityto advantage and redu
ing the noise by a exponentially large fa
tor[15℄, but the mathemati
s of this is wellbeyond the s
ope of this dis
ussion. This 
hapter 
ontinues with two extended examples that demonstrateboth the analysis methods of se
tion 2 and the delay-
oordinate re
onstru
tion te
hniques of se
tion 3, and
on
ludes with some dis
ussion of the utility of these methods in intelligent data analysis.1 Linear Systems AnalysisThe basi
 framework of traditional signal analysis[43℄ is s
hematized in Fig. 2; in it, an input signal is appliedto a system to yield an output. One 
an des
ribe this pro
ess in the time domain, using the impulse responseh(t) to model the system, or in the frequen
y domain, using the frequen
y response transfer fun
tion H(s).The impulse response of a system is its transient response to a qui
k ki
k (x(t0) = 1; x(t) = 08 t 6= t0);the frequen
y response H(s) des
ribes, for all s, what the system does to a sinusoidal input of frequen
ys. H(s) is a 
omplex fun
tion; it is most frequently written (and plotted) in magnitude (jH(s)j) and angle(6 H(s)) form, but sometimes appears as RefH(s)g and ImfH(s)g.De
omposing a problem in this \input + transfer fun
tion ! output" manner is very useful; amongother things, it allows one to apply powerful reasoning te
hniques like superposition2. The problem withFig. 2 is that systems 
an rea
t very di�erently to di�erent inputs at di�erent times|that is, h(t) andH(s) may depend on the magnitude of x, or they may have time-dependent 
oeÆ
ients. Either situationnegates almost all of the advantages of both parts of the framework shown in the Figure. Nonlinearity(the former 
ase) and nonstationarity (the latter) are treated later in this 
hapter; in the remainder of thisse
tion, we assume linearity and time invarian
e.The top paradigm in Fig. 2 is easier to think about, but the bottom is mathemati
ally mu
h easier towork with. In parti
ular, deriving y(t) from x(t) and h(t) involves a 
onvolution:y(t) = x(t) � h(t)= Z +1�1 x(�)h(t � �)d�2If the inputs x1 and x2 produ
e the outputs y1 and y2, respe
tively, then the input x1 + x2 will produ
e the outputy1 + y2. 3



whereas the frequen
y-domain 
al
ulation only requires multipli
ation:Y (s) = X(s)H(s)The frequen
y domain has a variety of other powerful features. The spe
trum is easy to interpret; the peaksof jH(s)j 
orrespond to the natural frequen
ies (\modes") of the system and hen
e, loosely speaking, to thenumber of degrees of freedom. Di�erential equations be
ome algebrai
 equations when transformed intothe frequen
y domain, and signal separation is a trivial operation. Be
ause of these advantages, engineersare trained to transform problems into the frequen
y domain, perform any required manipulations (e.g.,�ltering) in that domain, and then reverse-transform the results ba
k into the time domain.Traditional analysis methods 
hara
terize a linear system by des
ribing h(t) or H(s). Depending onthe demands of the appli
ation, this des
ription|the \model"|
an range from the highly abstra
t to thevery detailed:1. des
riptive models: e.g., the senten
e \as water 
ows out of a bathtub, the level in the tub de
reases"2. numeri
al models: a table of the water level in the tub versus time3. graphi
al models: the same information, but in pi
torial form4. statisti
al models: the mean, standard deviation, and/or trend of the water level5. fun
tional models: a least-squares �t of a line to the water level data6. analyti
 models: an equation, algebrai
 or di�erential, that relates out
ow and water levelThe simpli
ity of the �rst item on the list is de
eptive. Qualitative models like this are quite powerful|indeed, they are the basis for most human reasoning about the physi
al world. A 
ir
uit designer, forinstan
e, reasons about the gain-bandwidth tradeo� of a 
ir
uit, and understands the system in terms ofa balan
e between these two quantities: \if the gain goes up, the bandwidth, and hen
e the speed, goesdown...". Many traditional analysis methods are also based on qualitative models. One 
an, for instan
e,
ompute the lo
ation of the natural frequen
ies of a system from the ring frequen
y and de
ay time of itsimpulse response h(t) or the shape of its frequen
y response H(s); the latter also lets one 
ompute thespeed (rise time) and stability (gain or phase margin) of the system. Step and ramp response|how thesystem rea
ts to inputs of the form x(t) = 0 t < 0x(t) = 1 t � 0and x(t) = 0 t < 0x(t) = t t � 0respe
tively|also yield useful data analysis results; see [41℄ for details. Though qualitative models arevery powerful, they are also very diÆ
ult to represent and work with expli
itly; doing so e�e
tively is thefo
us of the qualitative reasoning/qualitative physi
s 
ommunity[52℄.As noted and dis
ussed by many authors (e.g., [49℄), tables of numbers are mu
h more useful to humanswhen they are presented in graphi
al form. For this reason, numeri
al models|item 2 in the list above|arerarely used, and many IDA resear
hers, among others, have devoted mu
h e�ort to �nding and 
odifyingsystemati
 methods for portraying a data set graphi
ally and highlighting its important features. Anotherway to make numbers more useful is to digest them into statisti
al values[53℄ like means, medians, andstandard deviations, or to use the methods of fun
tional approximation (e.g., 
hapter 10 of [20℄) andregression to �t some kind of 
urve to the data. Statisti
ians sometimes apply transformations to datasets for the purpose of stabilizing the varian
e or for
ing the distribution into a normal form. These4



methods|whi
h 
an be found in any basi
 text on statisti
al methods, su
h as [36℄|
an make dataanalysis easier, but one has to remember how the transformed data have been manipulated and be 
arefulnot to draw unwarranted 
on
lusions from it. It 
an also be hard to know what transformation to apply ina given situation; Box and Cox developed a formal solution to this, based on a parametri
 family of powertransforms[5℄.Sometimes, none of these abstra
tions and approximations is adequate for the task at hand and onemust use an analyti
 model. Again, these 
ome in many 
avors, ranging from algebrai
 expressions topartial di�erential equations. One of the simplest ways to use an algebrai
 equation to des
ribe a system'sbehavior is to model its output as a weighted sum of its 
urrent and previous inputs. That is, if one has aseries of values fxi(t)g of some system input xi|e.g., the position of a 
ar's throttle, measured on
e perse
ond|one predi
ts its output y (the 
ar's speed) using the equation:y(t) = LXl=0 blxi(t� l) (1)The te
hni
al task in �tting su
h an Lth-order moving average (MA) model to a data set involves 
hoosingthe window size L and �nding appropriate values for the bl. A weighted average of the last L values is asimple smoothing operation, so this equation represents a low-pass �lter. The impulse response of su
h a�lter|again, how it responds to a qui
k ki
k|is des
ribed by the 
oeÆ
ients bl: as l goes from 0 to L, theimpulse �rst \hits" b0, then b1, and so on. Be
ause this response dies out after L timesteps, equation (1)is a member of the 
lass of so-
alled �nite impulse response (FIR) �lters.Autoregressive (AR) models are similar to MA models, but they are designed to a

ount for feedba
k,where the output depends not only on the inputs, but also on the previous output of the system:y(t) = MXm=0 amy(t�m) + xi(t) (2)Feedba
k loops are 
ommon in both natural and engineered systems; 
onsider, for instan
e, a 
ruise 
ontrolwhose task is to stabilize the speed of a 
ar at 100 kph by manipulating the throttle 
ontrol. Traditional
ontrol strategies for this problem measure the di�eren
e between the 
urrent output and the desired setpoint, then use that di�eren
e to 
ompute the input|e.g., opening the 
ar's throttle x in proportion to thedi�eren
e between the output y and the desired speed. Feedba
k also has many important impli
ations forstability, in part be
ause the loop from output to input means that the output y 
an 
ontinue to os
illateinde�nitely even if the input is 
urrently zero. (Consider, for example, the AR model y(t) = �y(t�1)+x(t)if x = 0.) For this reason, AR models are sometimes 
alled in�nite impulse response (IIR) �lters. Thedependen
e of y(t) on previous values of y also 
ompli
ates the pro
ess of �nding 
oeÆ
ients am that �tthe model to a data set; see, e.g., [6℄ for more details.The obvious next step is to 
ombine MA and AR models:y(t) = LXl=0 blxi(t� l) + MXm=0 amy(t�m) (3)This \ARMA" model is both more general and more diÆ
ult to work with than its prede
essors; one must
hoose L and M intelligently and use frequen
y-transform methods to �nd the 
oeÆ
ients; see [6℄ for thismethodology. Despite these diÆ
ulties, ARMA models and their 
lose relatives have \dominated all areasof time-series analysis and dis
rete-time signal pro
essing for more than half a 
entury"[51℄.Models like those in the ARMA family 
apture the input/output behavior of a system. For some tasks,su
h as 
ontroller design, input/output models are inadequate and one really needs a model of the internaldynami
s: a di�erential equation that a

ounts for the system's dependen
e on present and previous states.As an example, 
onsider the spring/mass system of Fig. 1. If x is the deformation of the spring from itsnatural length, one 
an write a for
e balan
e at the mass as follows:�F = mamg � kx = ma5



A

eleration a is the se
ond derivative of position (a = x00) and both are fun
tions of time, so the for
e-balan
e equation 
an be rewritten as: mx(t)00 = mg � kx(t) (4)This linear3 di�erential equation expresses a set of 
onstraints among the derivatives of an unknownfun
tion x(t) and a set of 
onstants. The mg term is gravity; the kx term is Hooke's law for the for
eexerted by a simple spring. The signs of mg and kx are opposite be
ause gravity pulls in the dire
tionof positive x and the spring pulls in the dire
tion of negative x. Di�erential equations 
apture a system'sphysi
s in a general way: not only does their form mirror the physi
al laws, but their solutions also a

ountfor every possible behavior of the system. For any initial 
onditions for the position and velo
ity of themass, for instan
e, the equation above 
ompletely des
ribes where it will be at all times in the future.However, di�erential equations are mu
h more diÆ
ult to work with than the algebrai
 models des
ribedin the previous paragraphs. They are also mu
h more diÆ
ult to 
onstru
t. Using observations of a bla
k-box system's outputs to reverse-engineer its governing equations|i.e., �guring out a di�erential equationfrom partial knowledge about its solutions|is an extremely diÆ
ult task if one does not know what isinside the box. This pro
edure, whi
h is known as system identi�
ation in the 
ontrol-theory literature,is fairly straightforward if the system involved is linear; the textbook approa
h[28℄ is to 
hoose a generi
ordinary di�erential equation (ODE) system _~x(t) = B~x(t)|with ~x(t) = x1(t); x2(t); : : : xn(t)|fast-Fourier-transform the sensor data, and use the 
hara
teristi
s of the resulting impulse response to determine the
oeÆ
ients of the matrix B. The natural frequen
ies, whi
h appear as spikes on the impulse response, yieldthe system's eigenvalues; the o�-diagonal elements 
an be determined via an analysis of the shape of theimpulse response 
urve between those spikes. See [28℄ or [33℄ for a full des
ription of this pro
edure.A linear, time-invariant system 
an be des
ribed quite ni
ely by the kinds of models that are des
ribedin this se
tion, but nonstationarity or nonlinearity 
an throw a large wren
h in the works. The standardtextbook approa
h[10℄ to nonstationary data analysis involves spe
ial te
hniques that re
ognize the exa
tform of the nonstationarity (e.g., linear trend) and various ma
hinations that transform the time seriesinto stationary form, at whi
h point one 
an use ARMA methods. Nonlinearity is not so easy to getaround. It 
an be shown, for instan
e, that ARMA 
oeÆ
ients and the power spe
trum (i.e., Fourier
oeÆ
ients) 
ontain the same information. Two very di�erent nonlinear systems, however, may havealmost indistinguishable spe
tra, so methods in the ARMA family break down in these 
ases4. Spe
tralsimilarity of dissimilar systems also has important impli
ations for signal separation. In linear systems, itis often safe to assume, and easy to re
ognize, that the \important" parts of the signal are lower down onthe frequen
y s
ale and easily separable from the noise (whi
h is assumed to be high frequen
y), and it iseasy to implement digital �lters that remove 
omponents of a signal above a spe
i�ed 
uto� frequen
y[37℄.In nonlinear systems, as des
ribed in more detail in the following se
tion, the important parts of the signaloften 
over the entire spe
trum, making signal separation a diÆ
ult proposition. Nonlinearity is even moreof a hurdle in system identi�
ation: 
onstru
ting dynami
 models of linear systems is relatively tra
table,but human pra
titioners 
onsider nonlinear system identi�
ation to be a \bla
k art," and automating thepro
ess[7℄ is quite diÆ
ult.2 Nonlinear Dynami
s Basi
sA dynami
al system is something whose behavior evolves with time: binary stars, transistor radios,predator-prey populations, di�erential equations, the air stream past the 
owl of a jet engine, and myriadother examples of interest to s
ientists and engineers in general and intelligent data analysts in parti
ular.The bulk of an engineering or s
ien
e edu
ation and the vast majority of the data analysis methods in
urrent use, some of whi
h are outlined in the previous se
tion, are fo
used on linear systems, like a masson a spring: systems whose governing equations do not in
lude produ
ts, powers, trans
endental fun
tions,3The right-hand side of a linear di�erential equations is of the form ax+ b4One 
an 
onstru
t a pat
hwork of lo
al-linear ARMA models[47℄ in situations like this, but su
h ta
ti
s 
ontribute littleto global system analysis and understanding. 6



_x
xFigure 3: A state-spa
e traje
tory representing the os
illation of the spring-mass system of Figure 1.et
. Very few systems �t this mold, however, and the behavior of nonlinear systems is far ri
her thanthat of linear systems. This ri
hness and generality makes nonlinear systems both mu
h more diÆ
ult andmu
h more interesting to analyze.The state variables of a dynami
al system are the fundamental quantities needed to des
ribe it fully|angular position � and velo
ity ! = _� for a pendulum, for instan
e, or 
apa
itor voltages and indu
tor
urrents in an ele
troni
 
ir
uit. The number n of state variables is known as the dimension of the system;a pendulum or a mass on a spring is a two-dimensional system, while a three-
apa
itor 
ir
uit has threedimensions. Simple systems like this that have a �nite number of state variables 
an be des
ribed byordinary di�erential equation (ODE) models like Equation (4) for the spring-mass system or��(t) = �g sin �(t) (5)for a pendulum moving under the in
uen
e of gravity g. Equation (4) is linear and equation (5), be
ause ofthe sin term, is not; in both systems, n = 2. If the number of state variables in the system is in�nite|e.g.,a moving 
uid, whose physi
s is in
uen
ed by the pressure, temperature and velo
ity at every point|the system is 
alled spatiotemporally extended, and one must use partial di�erential equation (PDE)models[14℄ to des
ribe it properly. In this 
hapter, we will 
on�ne our attention to �nite-dimensionaldynami
al systems that admit ODE models. Be
ause so many real-world problems are nonlinear, we will
on
entrate on methods that are general and powerful enough to handle all dynami
al systems|not justlinear ones. Finally, sin
e most natural and man-made systems are not only nonlinear but also dissipative|that is, they lose some energy to pro
esses like fri
tion|we will not 
over the methods of 
onservative orHamiltonian dynami
s[3, 35℄.Mu
h of traditional systems analysis, as des
ribed in the previous se
tion, fo
uses on time-series orfrequen
y-domain data. The nonlinear dynami
s 
ommunity, in 
ontrast, relies primarily upon the state-spa
e representation, plotting the behavior on the n-dimensional spa
e (Rn) whose axes are the statevariables. In this representation, the damped os
illation of a mass boun
ing on a spring manifests not asa pair of de
aying sinusoidal time-domain signals, as in Fig. 1, but rather as a spiral, as shown in Fig. 3.State-spa
e traje
tories like this|system behavior (i.e., ODE solutions) for parti
ular initial 
onditions|only impli
itly 
ontain time information; as a result, they make the geometry of the equilibrium behavioreasy to re
ognize and analyze.Dissipative dynami
al systems have attra
tors: invariant state-spa
e stru
tures that remain after tran-sients have died out. A useful way to think about this is to envision the \
ow" of the dynami
s 
ausingthe state to evolve towards a \low point" in the state-spa
e lands
ape (
f., a raindrop running downhillinto an o
ean). There are four di�erent kinds of attra
tors:� �xed or equilibrium points� periodi
 orbits (a.k.a. limit 
y
les)� quasiperiodi
 attra
tors� 
haoti
 or \strange" attra
tors 7



A variety of pi
tures of these di�erent attra
tors appear in the later pages of this 
hapter. Fixed points|states from whi
h the system does not move|
an be stable or unstable. In the former 
ase (
f., Fig. 3)perturbations will die out; in the latter, they will grow. A 
ommonpla
e example of a stable �xed point is amarble at rest in the bottom of a bowl; the same marble balan
ed pre
ariously on the rim of that bowl is atan unstable �xed point. Limit 
y
les are signals that are periodi
 in the time domain and 
losed 
urves instate spa
e; an everyday example is the behavior of a healthy human heart. (One of the heart's pathologi
albehaviors, termed ventri
ular �brillation, is a
tually 
haoti
.) Quasiperiodi
 orbits and 
haoti
 attra
torsare less familiar and harder to analyze, but no less 
ommon or interesting. The latter, in parti
ular, arefas
inating. They have a �xed, 
ompli
ated, and highly 
hara
teristi
 geometry, mu
h like an eddy in astream, and yet nearby traje
tories on a 
haoti
 attra
tor move apart exponentially fast with time, mu
has two nearby wood 
hips will take very di�erent paths through the same eddy. Traje
tories 
over 
haoti
attra
tors densely, visiting every point to within arbitrary �, and yet they never quite repeat exa
tly.These properties translate to the very 
omplex, almost-random, and yet highly stru
tured behavior thathas intrigued s
ientists and engineers for the last twenty years or so. Further dis
ussion of 
haoti
 systems,in
luding a variety of examples, appears in se
tion 4. Parameter 
hanges 
an 
ause a nonlinear system'sattra
tor to 
hange drasti
ally. A 
hange in blood 
hemistry, for instan
e, 
an 
ause the heart's behaviorto 
hange from a normal sinus rythym to ventri
ular �brillation; a 
hange in temperature from 99.9 to100.1 degrees Celsius radi
ally alters the dynami
al properties of a pot of water. These kinds of topologi
al
hanges in its attra
tor are termed bifur
ations.Attra
tor type is an important nonlinear data analysis feature, and there are a variety of ways for
omputer algorithms to re
ognize it automati
ally from state-spa
e data. One standard geometri
 
lassi-�
ation approa
h is 
ell dynami
s[26℄, wherein one divides the state spa
e into uniform boxes. In Fig. 4,for example, the limit 
y
le traje
tory|a sequen
e of two-ve
tors of 
oating-point numbers measured bya �nite-pre
ision sensor|
an be represented as the 
ell sequen
e[:::(1; 0)(2; 0)(3; 0)(4; 0)(4; 1)(5; 1)(5; 2)(4; 2)(3; 2)(3; 3)(4; 3)(4; 4):::℄Be
ause multiple traje
tory points are mapped into ea
h 
ell, this dis
retized representation of the dy-
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Figure 4: Identifying a limit 
y
le using simple 
ell mappingnami
s is signi�
antly more 
ompa
t than the original series of 
oating-point numbers and therefore mu
heasier to work with. This is parti
ularly important when 
omplex systems are involved, as the number of
ells in the grid grows exponentially with the number of dimensions5. Though the approximate nature ofthis representation does abstra
t away mu
h detailed information about the dynami
s, it preserves manyof its important invariant properties; see [23℄ or [32℄ for more details. This point is 
riti
al to the utilityof the method; it means that 
on
lusions drawn from the dis
retized traje
tory are also true of the realtraje
tory|for example, a repeating sequen
e of 
ells in the former, as in Fig. 4, implies that the full Rndynami
s is on a limit 
y
le.5The example of Fig. 4 is two-dimensional, but the 
ell dynami
s formalism generalizes easily to arbitrary dimension.8



Mu
h as a bowl 
an have several low spots or a mountain range 
an in
lude many drainages, nonlinearsystems 
an have multiple attra
tors of di�erent types. Ea
h attra
tor lies in a unique basin of attra
tion(all the points in the bowl or mountain range from whi
h a marble or raindrop will end up at that attra
tor),and those basins partition6 the state spa
e. A linear system, on the other hand, 
an have only one �xedpoint, and its basin|if it is stable|is all of Rn. Dissipation, the notion of transient behavior that dies out,and the requirement that attra
tors are proper subsets of their basins are linked. Dynami
ists think aboutbasin/attra
tor dynami
s using the state-spa
e 
ontra
tion metaphor: initial 
onditions anywhere insidethe boundary of a basin of attra
tion will 
onverge to the asso
iated attra
tor, so one envisions a volumeof initial 
onditions spread out a
ross the basin, all eventually 
onverging to the attra
tor. (Conservativesystems|those in whi
h energy is 
onserved|preserve state-spa
e volumes and do not have attra
tors.)Basins are very important for nonlinear data analysis. Attra
tors in neighboring basins 
an be quitedi�erent, and so small di�eren
es in initial 
onditions matter; a raindrop a millimeter away from a sharpmountain ridge will take a radi
ally di�erent path if a light breeze 
omes up. This 
an be a useful wayto approa
h the analysis of a system that appears to have several behavior modes. Basin boundaries 
anbe 
omputed using the grid-based te
hniques des
ribed in the previous paragraph, as well as a variety ofother approa
hes; see [21℄ or se
tion 10.3.3 of [39℄ for more details.The �xed nature of an attra
tor of a dynami
al system is 
riti
ally important to the approa
h tointelligent data analysis that is outlined in this 
hapter; it implies that the dynami
al invariants of su
hattra
tors|their immutable mathemati
al properties|do not depend on how these attra
tors are viewed7,and therefore that analysis te
hniques that measure those invariants should yield the same results in the fa
eof transformations like 
oordinate 
hanges, for instan
e. Stability is su
h an invariant: a stable �xed pointshould not be
ome unstable if one re
alibrates a sensor. Topologi
al dimension is another: a �xed pointshould not appear as a limit 
y
le when viewed from another angle. The nonlinear dynami
s literaturede�nes dozens of other dynami
al invariants and proposes hundreds of algorithms for 
omputing them;see [2℄ for a readable and 
omprehensive introdu
tion. The two most 
ommon invariants in this list are theLyapunov exponent �, whi
h measures how fast neighboring traje
tories diverge, and the family of fra
taldimensions, so named be
ause they 
an take on non-integer (fra
tional! \fra
tal") values, whi
h measurehow mu
h of Rn a traje
tory a
tually o

upies.The Lyapunov exponent is de�ned as: � = limt!11t ln jsi(t)j (6)where the si(t) are the eigenvalues of the variational system (the matrix-valued linear di�erential equationthat governs the growth of a small variation in the initial 
ondition; see appendix B of [39℄ for details). A n-dimensional system has n �s, ea
h measuring the expansion rate, in one \dire
tion," of the distan
e betweentwo neighboring traje
tories. � is the nonlinear generalization of the real part of an eigenvalue; a positive �implies exponential growth of a perturbation along the unstable manifold, the nonlinear generalization ofthe eigenve
tor asso
iated with a positive-real-part eigenvalue. A negative � implies exponential shrinkageof the perturbation along the stable manifold that is the nonlinear analog of the stable eigenve
tor. Asystem that has all negative �s in some region is said to be \stable in the sense of Lyapunov," and itstraje
tories relax to some proper subset of that region (the attra
tor). A system with all positive �s isunstable in all dire
tions. A zero � implies less-than-exponential growth, whi
h generally takes pla
e alongthe attra
tor. State-spa
e 
ontra
tion, part of the formal de�nition of dissipation, requires that ��i < 0for any dissipative system.The point of retooling the de�nition of dimension to allow for non-integer values is to be able to a
-
urately 
hara
terize obje
ts that are \between" two topologi
al dimensions. A Cantor set, for example|
onstru
ted by removing the middle portion of a line segment ad in�nitum, as shown in Fig. 5|
ontainsan in�nite number of zero-dimensional obje
ts (points) but its topologi
al dimension is still zero. Fra
taldimensions 
apture this property; one standard measure of the fra
tal dimension of the middle-third re-moved Cantor set, for example, is 0.63. This invariant is 
ommon in the nonlinear dynami
s 
ommunity6This is a slight abuse of the te
hni
al term \partition;" nonattra
ting sets|whi
h have no basins of attra
tion|
an existin dynami
al systems, and basins te
hni
ally do not in
lude their boundaries.7within some limits, of 
ourse 9



<etc>Figure 5: A middle-third-removed Cantor setbe
ause many (not all) 
haoti
 attra
tors have fra
tal state-spa
e stru
ture|that is, their attra
tors havenon-integer values of the fra
tal dimension. The most-
ommon algorithm for 
omputing any fra
tal di-mension of a set A, loosely des
ribed, is to dis
retize state spa
e into �-boxes, 
ount the number of boxes8o

upied by A, and let �! 0: d
 = lim�!0n log(N(A;�))log(1=�) o (7)whereN(A; �) is the number of 
losed balls of radius � > 0 needed to 
overA. (Stri
tly speaking, one doesn'tjust 
ount the boxes, but rather a

umulates the value of some measure on ea
h box; see the dis
ussionof equation (8) in se
tion 3.2.) In reality, 
oating-point arithmeti
 and 
omputational 
omplexity pla
eobvious limits on the � ! 0 part of equation (7); in pra
ti
e, one repeats the dimension 
al
ulation for arange of �s and �nds the power-law asymptote in the middle of the log-log plot of dimension versus �.Dynami
al invariants like � and d
 
an be used to 
lassify attra
tors. In a n-dimensional system, thereare n Lyapunov exponents �i and:� A stable �xed point has n negative �s (sin
e perturbations in any dire
tion will die out) and a fra
taldimension of zero.� An attra
ting limit 
y
le has one zero � and n� 1 negative �s (sin
e perturbations o� the attra
torwill die out, and a perturbation along the orbit will remain 
onstant) and a fra
tal dimension of one.� A 
haoti
 attra
tor has one zero � (along the attra
tor), at least one positive � and|generallybut not always|a non-integer fra
tal dimension. The positive � re
e
ts 
haos's hallmark \sensitivedependen
e on initial 
onditions:" the system's tenden
y to for
e neighboring traje
tories apart.Intelligent data analysis tools that target attra
tor type, basin geometry, dynami
al invariants, et
.are harder to implement than the kinds of te
hniques that one 
an apply to a linear system, and theirimpli
ations are generally less wide-ranging. If the system under 
onsideration is linear, as mentionedpreviously, data analysis is relatively easy and one 
an make more (and more-powerful) inferen
es fromthe results. Where nonlinear systems are 
on
erned, however, traditional methods often do not apply; inthese problems, time-series analysis is mu
h harder and the 
on
lusions one 
an draw from the results arefundamentally limited in range. This stems from the inherent mathemati
al diÆ
ulties of the domain, andit is essentially unavoidable. If one is fa
ed with a fundamentally nonlinear problem, one has no 
hoi
ebut to use the more diÆ
ult (and perhaps unfamiliar) methods 
overed in this 
hapter. The reader who isinterested in delving deeper into this �eld should 
onsult any of the dozens of good nonlinear dynami
s booksthat are 
urrently in print. An ex
ellent overall starting point is [45℄, the basi
 mathemati
s is 
overedparti
ularly well in [25℄, a 
omprehensive 
olle
tion of algorithms appears in [39℄, and an entertainingpopular overview may be found in [44℄.3 Delay-Coordinate EmbeddingGiven a time series from a sensor on a single state variable xi(t) in a n-dimensional dynami
al system,delay-
oordinate embedding lets one re
onstru
t a useful version of the internal dynami
s9 of that sys-8Hen
e the term \box-
ounting dimension."9That is, the state-spa
e traje
tory f~x(t)g, where ~x = fx1; x2; : : : xng is the ve
tor of state variables10



xi(t) t xi(t) t1.6352 0.000 1.6214 0.0081.6337 0.001 1.6183 0.0091.6322 0.002 1.6183 0.0101.6306 0.003 1.6168 0.0111.6276 0.004 1.6137 0.0121.6260 0.005 1.6107 0.0131.6230 0.006 1.6076 0.0141.6214 0.007 1.6045 0.015Table 1: An example data set: samples of one state variable xi, measured every �t = 0:001 se
onds.tem. If the embedding is performed 
orre
tly, the theorems involved guarantee that the re
onstru
teddynami
s is topologi
ally (i.e., qualitatively) identi
al to the true dynami
s of the system, and thereforethat the dynami
al invariants are also identi
al. This is an extremely powerful 
orresponden
e; it impliesthat 
on
lusions drawn from the embedded or re
onstru
tion-spa
e dynami
s are also true of the real|unmeasured|dynami
s. This implies, for example, that one 
an re
onstru
t the dynami
s of the earth'sweather simply by setting a thermometer on a windowsill.There are, of 
ourse, some important 
aveats. Among other things, a 
orre
t embedding requires atleast twi
e as many dimensions as the internal dynami
s|a requirement that makes re
onstru
tion ofthe weather thoroughly impra
ti
al, as it is a spatially extended system and thus of in�nite dimension.Moreover, even if the dynami
s of the system under examination is simple, its pre
ise dimension is oftenvery hard to measure and rarely known a priori. This is the main sour
e of the hard problems of delay-
oordinate embedding, whi
h are dis
ussed in more detail|together with some solutions|in the followingse
tions.3.1 Embedding: the basi
 ideasConsider a data set 
omprised of samples xi(t) of a single state variable xi in a n-dimensional system,measured on
e every �t se
onds, su
h as the example sensor time series shown in Table 1. To embed su
ha data set, one 
onstru
ts dE-dimensional re
onstru
tion-spa
e ve
tors ~r(t) from dE time-delayed samplesof the xi(t), su
h that ~r(t) = [xi(t); xi(t� �); xi(t� 2�); : : : ; xi(t� (m� 1)�)℄or ~r(t) = [xi(t); xi(t+ �); xi(t+ 2�); : : : ; xi(t+ (m� 1)�)℄For example, if the time series in Table 1 is embedded in two dimensions (dE = 2) with a delay � = 0:005,the �rst few points in the re
onstru
tion-spa
e traje
tory are:(1.6352 1.6260)(1.6337 1.6230)(1.6322 1.6214)(1.6306 1.6214)(1.6276 1.6183)(1.6260 1.6183)...If dE = 5 and � = 0:003, the �rst few points of the traje
tory are:(1.6352 1.6306 1.6230 1.6183 1.6137) 11



(a) (b)Figure 6: A 
losed 
urve in 3D, viewed from (a) the top and (b) the side. The latter proje
tion is istopologi
ally 
onjugate to a 
ir
le; be
ause of the self-interse
tion, the proje
tion in (a) is not.(1.6337 1.6276 1.6214 1.6183 1.6107)(1.6322 1.6260 1.6214 1.6168 1.6076)(1.6306 1.6230 1.6183 1.6137 1.6045)...The a
t of sampling a single system state variable xi(t) is equivalent to proje
ting an n-dimensionalstate-spa
e dynami
s down onto a single axis; the embedding pro
ess demonstrated above is akin to\unfolding" or \rein
ating" su
h a proje
tion, albeit on di�erent axes: the dE delay 
oordinates xi(t); xi(t��); xi(t� 2�); et
. instead of the n true state variables x1(t); x2(t); : : : ; xn(t). The 
entral theorem[46℄relating su
h embeddings to the true internal dynami
s, whi
h is generally attributed to Takens, wasproved in [38℄ and made pra
ti
al in [42℄; informally, it states that given enough dimensions (dE) andthe right delay (�), the re
onstru
tion-spa
e dynami
s and the true, unobserved state-spa
e dynami
s aretopologi
ally identi
al. More formally, the re
onstru
tion-spa
e and state-spa
e traje
tories are guaranteedto be di�eomorphi
 if dE = 2n+ 1, where n is the true dimension of the system10.Di�eomorphisms|transformations that are invertible, di�erentiable, and that possess di�erentiableinverses|preserve topology but not ne
essarily geometry. This means that an attra
tor re
onstru
tedusing delay-
oordinate embedding may look very di�erent from the true attra
tor, but the former 
an bestret
hed and bent into the shape of the latter without \
rossing over" itself. The 2n + 1 requirementof the theorem is really a brute-for
e worst-
ase limit for eliminating proje
tion-indu
ed 
rossings. Theself-interse
tion point in Fig. 6(a), for example, makes the 2D proje
tion of that 
urve not di�eomorphi
to a 
ir
le; viewed from another angle, however, as in part (b), the 
urve is indeed smoothly deformableinto a 
ir
le. 2n+1 is simply the minimum number of dimensions required to eliminate all su
h 
rossings,so lower-dimension embeddings may well be 
orre
t. This 
an, in fa
t, be exploited in deriving a tighterand easy-to-
ompute bound on dE that is valid in \almost every" situation[42℄.The topologi
al equivalen
e guaranteed by the Takens theorem is a powerful 
on
ept: it lets one drawsensible, justi�able 
on
lusions about the full dynami
s of an n-dimensional system using only the outputof a single sensor. In parti
ular, many properties of the dynami
s are preserved by di�eomorphisms; ifone 
omputes them from a 
orre
t embedding, the answer will hold for the true internal dynami
s as well.There are, of 
ourse, some important 
onditions on the theorem, and the diÆ
ulties that they pose are thesour
e of most of the e�ort and subtlety in these types of methods. Spe
i�
ally, in order to embed a dataset, one needs dE and � , and neither of these parameters 
an be measured or derived from the data set,either dire
tly or indire
tly, so algorithms like those des
ribed in the following se
tion rely on numeri
 andgeometri
 heuristi
s to estimate them.From a qualitative standpoint, embedding is not as outlandish as it may initially appear. The statevariables in a nonlinear system are generally 
oupled to one another temporally by the dynami
s, so usingquantities that resemble forward di�eren
es as the axes of a re
onstru
tion spa
e makes some sense. (Asmentioned before, te
hniques like divided di�eren
es 
an, in theory, be used to derive velo
ities fromposition data; in pra
ti
e, however, these methods often fail be
ause the asso
iated arithmeti
 magni�es10� is missing from these requirements be
ause the theoreti
al 
onditions upon it are far less stringent and limiting, asdes
ribed in the se
ond paragraph of the next se
tion. 12



sensor error.) One 
an think of the xi(t), xi(t � �), et
., as independent 
oordinates that are nonlinearlyrelated to the true state variables. The spe
i�
s of that relationship may not|and need not|be obvious;the important point is that the form of that relationship ensures that the re
onstru
ted dynami
s ~r(t) 2 RdEis di�eomorphi
 to the true dynami
s ~x(t) 2 Rn.3.2 Finding appropriate embedding parametersThe time-series analysis literature 
ontains s
ores of methods that use a variety of heuristi
s to solve the
entral problem of delay-
oordinate re
onstru
tion: given a s
alar time series from a dynami
al systemof unknown dimension, estimate values for the dimension dE and delay � that will guarantee a 
orre
tembedding. Many of these algorithms are somewhat ad ho
; almost all are 
omputationally expensive andhighly sensitive to sensor and algorithm parameters, and di�erent ones produ
e surprisingly di�erent results,even on the same data set. See [2℄ for a re
ent summary and the FAQ for the newsgroup s
i.nonlinear[1℄for a list of publi
-domain software implementations of many of these algorithms. This 
hapter 
overs onlya few of the most widely a

epted and/or interesting representatives of this body of work.The delay � governs whether or not the 
oordinates x(t� j�) are indeed independent. If � is small, there
onstru
tion-spa
e traje
tory will lie very near the main diagonal. As long as the stru
ture is not in�nitelythin, this type of embedding is theoreti
ally 
orre
t; in pra
ti
e, however, �nite-pre
ision arithmeti
 on�xed-length (and possibly noisy) traje
tories 
an easily generate apparent 
rossings in situations like this.If � is too large, on the other hand, su

essive points ~r(t) and ~r(t+�t), where �t is the sampling interval,will be un
orrelated and the larger spa
ing of the points in ~r(t) again interferes numeri
ally with topologi
alequivalen
e. Ideally, then, one wants a time window for � that is long enough for the system state to evolveto a visible (with respe
t to 
oating-point arithmeti
) but not ex
essive extent.One way to 
ompute su
h an estimate is to perform some sort of averaged auto
orrelation of su

essivepoints in the time series xi(t) or in the embedded traje
tory ~r(t)|e.g., average mutual information[17℄|asa fun
tion of � . For very small � , these statisti
s will be 
lose to 1.0, sin
e su

essive re
onstru
tion-spa
e traje
tory points are very 
lose to one another11. For larger � , su

essive points be
ome in
reasinglyun
orrelated. The �rst minimum in the distribution is a sensible 
hoi
e for � : qualitatively, it 
orresponds tothe smallest � for whi
h the dynami
s has 
aused nearby traje
tory points to be
ome somewhat un
orrelated(i.e., new information has been introdu
ed between samples). This 
hoi
e was originally proposed[17℄ byFraser; other authors suggest using other features of the auto
orrelation 
urve to 
hoose good values for�|e.g., the �rst maximum, with the rationale that these \
lose returns" 
orrespond to natural periodsof the system. Note that sin
e one 
an 
ompute average mutual information (AMI) from one- and two-embeddings (that is, dE = 1 and dE = 2), this kind of pro
edure does not require one to �rst �nd a 
orre
tvalue for dE .The Pineda-Sommerer (P-S) algorithm[40℄, whi
h solves both halves of the embedding parameter prob-lem at on
e, is more esoteri
 and 
ompli
ated. Its input is a time series; its outputs are a delay � and avariety of di�erent estimates of the dimension dE . The pro
edure has three major steps: it estimates �using the mutual information fun
tion, uses that estimated value �0 to 
ompute a temporary estimate Eof the embedding dimension, and uses E and �0 to 
ompute the generalized dimensions Dq, members of aparametrized family of fra
tal dimensions. Generalized dimensions are de�ned asDq = 1q � 1 lim sup�!0 logPi pqilog � (8)where pi is some measure of the traje
tory on box i. D0; D1, and D2 are known, respe
tively, as the
apa
ity, information, and 
orrelation dimensions. The a
tual details of the P-S algorithm are quiteinvolved; we will only give a qualitative des
ription:� Constru
t one- and two-embeddings of the data for a range of �s and 
ompute the saturation dimensionD�1 of ea
h; the �rst minimum in this fun
tion is �0. The D�1 
omputation entails:11Note that ~r(t) = xi(t) if dE = 1. 13
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Figure 7: The geometri
 basis of the FNN algorithm. If this 
urve is proje
ted onto the x axis, the pointsA, B, and C appear to be near neighbors, even though C is quite distant in the 2D view. Di�eren
esbetween one- and two-embeddings of these data will expose false near neighbors like the [A,C℄ pair.� Computing the information dimension D1 for a range of embedding dimensions E and identi-fying the saturation point of this 
urve, whi
h o

urs at embedding dimension D�1 . The D1
omputation entails:� Embedding the data in E-dimensional spa
e, dividing that spa
e into E-
ubes that are � ona side, and 
omputing D1 using equation (8) with q = 1.P-S in
orporates an ingenious 
omplexity-redu
tion te
hnique in the fra
tal dimension 
al
ulation: the �s(see equation (7)) are 
hosen to be of the form 2�k for integers k and the data are integerized, allowingmost of the mathemati
al operations to pro
eed at the bit level and vastly a

elerating the algorithm.The false near neighbor (FNN) algorithm[29℄, whi
h takes a � and a time series and produ
es a lowerbound on dE , is far simpler than P-S. (As mentioned above, upper bounds for dE are often 
hosen to bethe smallest integer greater than twi
e the 
apa
ity dimension, D0, of the data, in a

ordan
e with [42℄.)FNN is based on the observation that neighboring points may in reality be proje
tions of points that arevery far apart, as shown in Fig. 7. The algorithm starts with dE = 1, �nds ea
h point's nearest neighbor,and then embeds the data with dE = 2. If the point separations 
hange abruptly between the one- andtwo-embeddings, then the points were false neighbors (like A and C in the x-proje
tion of Fig. 7). TheFNN algorithm 
ontinues adding dimensions and re-embedding until an a

eptably small12 number offalse near neighbors remains, and returns the last dE-value as the estimated dimension. This algorithmis 
omputationally quite 
omplex; �nding the nearest neighbors of m points requires O(m2) distan
e
al
ulations and 
omparisons. This 
an be redu
ed to O(m logm) using a K-D tree implementation[18℄.As should be obvious from the 
ontent and tone of this introdu
tion, estimating � and dE is algorithmi-
ally ad ho
, 
omputationally 
omplex, and numeri
ally sensitive. For this reason, among others, nonlineartime-series analysis te
hniques that do not require embedding are extremely attra
tive. Re
ent eviden
e[27℄suggests that the re
urren
e plot|a two-dimensional representation of a single traje
tory wherein the timeseries spans both ordinate and abs
issa and ea
h point (i; j) on the plane is shaded a

ording to the dis-tan
e between the two 
orresponding traje
tory points yi and yj|may be su
h a te
hnique. Among theirother advantages, re
urren
e plots also work well on nonstationary data; see the following se
tion for anexample (Fig. 11) and more dis
ussion.12An algorithm that removes all false near neighbors 
an be unduly sensitive to noise.
14
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(a) (b) (
)Figure 8: State-spa
e plots of Lorenz system behavior with a = 10 and b = 8=3: (a) a stable �xed point forr = 15 (b) a 
haoti
 attra
tor for r = 45 (
) a periodi
 orbit for r = 100. All three plots are two-dimensional(x� z) proje
tions of three-dimensional attra
tors.4 ExamplesIn this se
tion, we demonstrate some of the 
on
epts and algorithms des
ribed in the previous two se
tionsusing two examples, one simulated and one real.4.1 The Lorenz systemIn the early 1960s[34℄, Edward Lorenz derived a simple model of the physi
s of a 
uid that is being heatedfrom below: _~x(t) = ddt~x(t) = 24 _x(t)_y(t)_z(t) 35 = 24 a(y(t)� x(t))rx(t) � y(t)� x(t)z(t)x(t)y(t)� bz(t) 35 (9)This 3rd-order (n = 3) ODE system is a rough approximation of a mu
h more 
omplex model: the Navier-Stokes PDEs for 
uid 
ow. The state variables x; y; and z are 
onve
tive intensity, temperature variation,and the amount of deviation from linearity in the verti
al 
onve
tion pro�le, respe
tively; the 
oeÆ
ients aand r are physi
al parameters of the 
uid|the Prandtl and Rayleigh numbers|and b is the aspe
t ratio.This set of equations is one of the most 
ommon examples in the nonlinear dynami
s literature. At low rvalues, its solutions exhibit damped os
illations to simple �xed-point equilibria, the �rst 
ategory on the listof attra
tor types on page 7, as shown in Fig. 8(a). For higher r|whi
h translates to a higher heat input|the 
onve
tion rolls in the modeled 
uid persist, in a 
ompli
ated, highly stru
tured, and nonperiodi
 way;see part (b) of Fig. 8 for an example. This behavior, reported in a 1963 paper entitled \Deterministi
Nonperiodi
 Flow," led Lorenz to re
ognize the 
lassi
 \sensitive dependen
e on initial 
onditions" in the
ontext of a �xed attra
tor geometry that is now a well-known hallmark of 
haos. (The term \
haos"was 
oined twelve years later[31℄.) If r is raised further, the 
onve
tion rolls be
ome periodi
|the se
ond
ategory in the list on page 7. See part (
) of the Figure for an example.The traje
tories plotted in Fig. 8 in
lude 
omplete information about all three of the state variables. Inthe analysis of a real system, this may be an overly optimisti
 s
enario; while temperature is not hard tomeasure, the other state variables are not so easy, so a full state-spa
e pi
ture of the dynami
s|informationthat is amenable to the te
hniques of se
tion 2|may well be unavailable. Using the theory and te
hniquesdes
ribed in se
tion 3, however, one 
an re
onstru
t the internal dynami
s of this system from a time-seriessampling of one of its state variables|say, the x 
oordinate of the 
haoti
 attra
tor in part (b) of Fig. 8,whi
h is plotted in time-domain form in Fig. 9(a). After embedding those data in delay 
oordinates, one
an apply the nonlinear state-spa
e analysis methods of se
tion 2 to the results. The �rst step in theembedding pro
ess is to de
ide upon a delay, � . The �rst minimum in the AMI results shown in Fig. 9 fallsat roughly � = 0:09 se
onds13. Using this � , the false-near neighbor results (part (b) of Fig. 9) suggest an13The x-axis of the plot is measured in multiples of the sample interval of 0.002 se
ond.15
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(d)Figure 9: The x 
oordinate of the 
haoti
 Lorenz signal from part (b) of Fig. 8 and the 
orrespondingembedding parameter analysis: (a) time series (b) average mutual information (AMI) as a fun
tion of thedelay � (
) false-near neighbor (FNN) per
entage as a fun
tion of embedding dimension dE (d) box-
ountingdimension (D0) as a fun
tion of dE . AMI, FNN and D0 results 
ourtesy of Joe Iwanski.
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Figure 10: Embeddings of the 
haoti
 Lorenz signal from Fig. 9(a) with dE = 3 and various delays,plotted in 2D proje
tion. The formal requirements of the embedding pro
ess|whi
h these attra
torsmeet|guarantees that they are topologi
ally identi
al to the true attra
tor in Fig. 8(b).embedding dimension of two or three, depending on one's interpretation of the heuristi
 \a

eptably smallper
entage" threshold in the algorithm. The box-
ounting dimension of this data set levels o� at roughly1.8 for dE = 2 and above, as 
an be seen in part (
) of the Figure. Following [42℄, this would imply anupper-bound embedding dimension of four.It 
an be diÆ
ult to keep this menagerie of dimensions straight. In this example, the true dimensionis known: n = 3. The time series x(t) in Fig. 9(a) is a one-dimensional proje
tion of the R3 traje
tory inFig. 8(b) onto the x axis. In the worst 
ase, the Takens theorem tells us that an a

urate re
onstru
tion mayrequire as many as dE = 2n+1 = 7 embedding dimensions in order to assure topologi
al 
onjuga
y to thetrue dynami
s. Re
all that this is a very pessimisti
 upper bound; in pra
ti
e, slightly more opportunisti
algorithms like the one proposed in [42℄ are able to make better bounds estimates|values for dE that arelower than 2n+1 and, at the same time, that avoid proje
tion-indu
ed topologi
al inequivalen
ies betweenthe true and re
onstru
ted dynami
s. In making su
h estimates, many of these algorithms make use ofthe fa
t that attra
tors do not o

upy all of Rn. The fra
tal dimension of the a = 10; r = 45; b = 8=3Lorenz attra
tor, for instan
e, is somewhere between 1 and 2, depending upon whi
h algorithm one uses;the 
al
ulated 
apa
ity dimension D0 of the traje
tory in Fig. 8(b), in parti
ular, is 1.8, implying an upperbound of dE = 4. Even this estimate is somewhat pessimisti
. Fra
tal dimension is a highly digested pie
eof information: a lumped parameter that 
ompresses all the geometri
 information of an attra
tor into asingle number. Be
ause the FNN algorithm is based upon a more-detailed examination of the geometry,its results (dE = 3, in this 
ase) are a better lower bound.Fig. 10 shows embeddings of the Lorenz time series of Fig. 9 with dE = 3 and various �s. Note how thisre
onstru
ted attra
tor starts out as a thin band near the main diagonal and \in
ates" with in
reasing � .17
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Figure 11: Re
urren
e plots (rps) of a short segment (top) of the Lorenz data from part (a) of Fig. 9.The pixel at i; j is shaded to re
e
t the distan
e between the ith and jth point in the time series. On theunthresholded re
urren
e plot (utrp) on the bottom left, ea
h pixel is 
oded a

ording to the 
olor barshown to the right of the utrp; in the thresholded rp to the bottom right, pixels are bla
k if the distan
efalls within some pres
ribed threshold 
orridor and white otherwise. Results 
ourtesy of Joe Iwanski.The sample interval in this data set was not mu
h smaller than the � returned by the AMI algorithm, sothe thinnest re
onstru
tion is fairly wide. Note, too, the resemblan
e of these re
onstru
ted attra
tors tothe true state-spa
e traje
tory in Fig. 8(b) and how that resemblan
e 
hanges with � . The whole pointof doing an embedding is that the former 
an be deformed smoothly into the latter|even the � = 0:5re
onstru
tion, where the similarity (let alone the di�eomorphism!) is hard to visualize|and that thedynami
al invariants of true (Fig. 8(b)) and re
onstru
ted (Fig. 10) attra
tors are identi
al. That is, a�xed point in the re
onstru
ted dynami
s implies that there is a �xed point in the true dynami
s, and soon. As noted before, this is the power of delay-
oordinate embedding: one 
an use nonlinear dynami
sanalysis te
hniques on its results and safely extend those 
on
lusions to the hidden internal dynami
s ofthe system under examination.It would, of 
ourse, be ideal if one 
ould avoid all of these embedding ma
hinations and analyze thes
alar time series dire
tly. As mentioned at the end of se
tion 3, re
urren
e plots (rps) are relatively newand potentially quite powerful nonlinear time-series analysis tools whose results appear to be independentof embedding dimension in some 
ases[27℄. An rp is a two-dimensional representation of a single traje
tory;the time series is spread out along both x and y axes of the plot, and ea
h pixel is shaded a

ording tothe distan
e between the 
orresponding points|that is, if the 117th point on the traje
tory is 14 distan
eunits away from the 9435th point and the distan
e range 13{15 
orresponds to the 
olor red, the pixel lyingat (117, 9435) on the rp will be shaded red. Fig. 11 shows a re
urren
e plot (rp) of a short segment of thethe Lorenz signal in part (a) of Fig. 9. Di�erent types of attra
tors leave 
lear and suggestive signaturesin rps; it is easy to re
ognize a periodi
 signal, for instan
e, and 
haoti
 attra
tors exhibit the type ofintri
ate patterns that are visible in Fig. 11. Formalized 
lassi�
ation of these signatures, however, is adiÆ
ult problem|and a 
urrent resear
h topi
. There are well-developed statisti
al approa
hes[27, 48℄,but stru
tural/metri
 analysis (e.g., via pattern re
ognition) is still an open problem, although some re
entprogress has been made[8, 19℄.
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4.2 The driven pendulumA time-series plot of a data set from an angle sensor on a parametri
ally for
ed pendulum|a solid aluminumarm that rotates freely on a standard bearing, driven verti
ally by a motor through a simple linkage|isshown in part (a) of Fig. 12. An a
tuator 
ontrols the drive frequen
y and a sensor (an opti
al en
oder)measures its angular position. The behavior of this apparently simple devi
e is really quite 
ompli
atedand interesting: for low drive frequen
ies, it has a single stable �xed point, but as the drive frequen
y israised, the attra
tor undergoes a series of bifur
ations. In the sensor data, this manifests as interleaved
haoti
 and periodi
 regimes[13℄. The driven pendulum is also interesting from a modeling standpoint; athigh resolutions, the ba
klash in the bearings invalidates the standard textbook model. Modeling thesee�e
ts is 
riti
al, for instan
e, to the a

urate 
ontrol of robot arms.The test run plotted in Fig. 12 was 
hosen for this example be
ause the pendulum is os
illating in a
haoti
 manner, whi
h rules out many traditional time-series analysis methods. The 
haos manifests asseemingly stru
tured, almost-periodi
 patterns in the time-series signal: os
illations that are quite similarbut not identi
al and that almost (but not quite) repeat. Though these patterns are highly suggestive, theyare very diÆ
ult to des
ribe or 
lassify in the time domain; in a state-spa
e view, however, the 
hara
teristi
stru
ture of the pendulum's 
haoti
 attra
tor be
omes patently obvious. Unfortunately, dire
t state-spa
eanalysis of this system is impossible. Only angle data are available; there is no angular velo
ity sensorand attempts to 
ompute angular velo
ity via divided di�eren
es from the angle data yield numeri
allyobs
ured results be
ause the asso
iated arithmeti
 magni�es the dis
retization error in angle (from thesensor resolution) and time (from timebase variation in the data 
hannel).Delay-
oordinate embedding, however, produ
es a 
lean, easily analyzable pi
ture of the dynami
sthat is guaranteed to be di�eomorphi
 to the system's true dynami
s. As in the Lorenz example, theembedding pro
edure begins with an estimation of � . AMI results on the 
haoti
 pendulum data set,shown in part (b) of Fig. 12, suggest a delay of 0.022 se
onds (roughly 11 
li
ks at a sample interval of0.002 se
onds). FNN results 
onstru
ted using this � , shown in Fig. 11(
), suggest an embedding dimensionof dE = 3. The 
apa
ity dimension D0|part (d)|varies between 1.7 and 2.1, implying an upper boundof dE = 5, following [42℄.In the Lorenz example of the previous se
tion, the true dimension n was known. In the experimentalpendulum setup, this is not the 
ase. Presumably, three of the state variables are the bob angle �, theangular velo
ity !, and the time14 t; if, however, the devi
e is shaking the lab ben
h or 
ontra
ting andexpanding with ambient temperature, other for
es may 
ome into play and other state variables may haveimportant roles in the dynami
s. The results des
ribed in the previous paragraph, whi
h suggest that thedynami
al behavior of the pendulum is low-dimensional (dE = 3� 5, spe
i�
ally), imply that the systemis probably not in
uen
ed by variables like lab ben
h position or temperature. Higher dE values from theestimation algorithms would suggest otherwise. This kind of high-level information, a natural result ofdelay-
oordinate re
onstru
tion and nonlinear dynami
s analysis, is extremely useful for intelligent dataanalysis.Fig. 13 shows embeddings for various �s; note how a small � , as in the Lorenz example, 
reates are
onstru
tion that hugs the main diagonal, and how that re
onstru
ted attra
tor unfolds as � grows.The pendulum data were greatly oversampled, so it is possible to 
reate a thinner embedding than in theLorenz example, as shown in part (a) of this Figure. This is the type of re
onstru
tion whose topologi
ally
onjuga
y to the true dynami
s is e�e
tively destroyed by noise and numeri
al problems; note the apparentoverlap of traje
tories and sprinkling of noisy points just outside the true attra
tor in the � = 0:01 and� = 0:02 embeddings.As before, on
e one has a su

essful re
onstru
tion of the dynami
s, all of the analysis tools des
ribedin se
tion 2 
an be brought to bear upon it, and their 
on
lusions 
an be assumed to hold for the system'sfull underlying behavior.14In a driven or nonautonomous system, time is an exogenous variable.19
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(d)Figure 12: A 
haoti
 sensor data set from a parametri
ally for
ed pendulum: (a) time-domain plot of thebob angle, measured modulo 2� (b) AMI (
) FNN and (d) D0 results, all 
ourtesy of Joe Iwanski.
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Figure 13: Embeddings of the pendulum data set from part (a) of Fig. 12.
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5 Why Nonlinear Dynami
s and Embedding are Useful for In-telligent Data AnalysisOne of the more 
ommon|and more diÆ
ult|problems fa
ed by an engineer or s
ientist is to analyze thedynami
s of a 
ompli
ated nonlinear system, given only measurements of one state variable. The te
hniquesdes
ribed in se
tion 3 of this 
hapter, 
oupled with the theory 
overed in se
tion 2, make signi�
ant inroadson this problem, allowing one to draw useful, justi�able, and sensible 
on
lusions about a nonlinear systemfrom the output of a single sensor. Spe
i�
ally, a 
orre
t embedding of a data set from a single sensor on abla
k-box system is guaranteed to have the same dynami
al invariants as the n-dimensional dynami
s of thesystem inside the bla
k box, and those invariants are useful tools for intelligent data analysis. Time-seriesanalysis tools for linear systems are mu
h easier to understand, implement, and use, but the universe is byand large nonlinear, so the appli
ation range of those kinds of tools is severely limited. Filtering out noise,for example, is fairly straightforward when one is working with data from a linear system: one simplytransforms the data into the frequen
y domain and uses a low-pass �lter. In nonlinear systems, separatingsignal from noise is problemati
, as the former is often broad band and thus the two are intermingled.(Noise, in
identally, is in�nite-dimensional, so its impli
ations for embedding dimension 
al
ulations aredire; re
all the 2n + 1 requirement in the embedding theorems.) There has been some re
ent work onnonlinear \�ltering" algorithms[22℄, in
luding �ltered delay-
oordinate embedding[42℄ and an intriguingte
hnique that exploits the stable and unstable manifold stru
ture of a 
haoti
 attra
tor to 
ompress thenoise ball. The latter method requires 
omplete knowledge of the dynami
s|the ODEs that govern thesystem. Sin
e reverse-engineering ODEs from time-series samples of their solutions is an open problem fornonlinear systems, this �ltering approa
h is hard to put into pra
ti
e. One 
an, however, approximate theODEs with lo
al-linear models and get some reasonable results; see [15℄ for more details. In some 
ases,noise 
an a
tually be turned to advantage; its presen
e in a time series 
an allow the modeler to \explore"more of the state spa
e[9℄.One popular te
hnique that may be 
onspi
uous by its absen
e from this 
hapter is the neural net.Neural nets[24℄, whi
h are dis
ussed in Chapter 7 of this volume, are essentially nonlinear regressionnetworks that model the input/output behavior of a system. They are very good at learning the patternsin a data set, and hen
e are very e�e
tive at predi
ting what a system will do next. However, they do notmodel the underlying physi
s in a human-
omprehensible form. It is very diÆ
ult to learn anything usefulabout a system by examining a neural net that has been \trained" on that system, so this te
hnique hasbeen omitted from this dis
ussion. Their ability to predi
t, however, makes neural nets potentially usefulto intelligent data analysis in a somewhat 
ounterintuitive fashion: if one needs more data, one 
an traina neural net on the time series and then use it to augment that data set, generating new points that are
onsistent with the dynami
s[11℄.Nonlinear dynami
s te
hniques like the ones des
ribed in this 
hapter may be more diÆ
ult to under-stand and use than the more-familiar linear ones, but they are more broadly appli
able|indeed, the latter
an be viewed as a subset of the former. This family of theory and te
hnique is valuable not only for time-series analysis, but also for many other tasks, su
h as modeling and predi
tion[12℄. The kinds of modelsmentioned in the �rst paragraph of this se
tion, for instan
e, have been su

essfully used to predi
t thebehavior of systems ranging from roulette wheels[4℄ to physiologi
al disease patterns, 
urren
ies markets,and Ba
h fugues[51℄.A
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