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Abstract. We describe a preliminary implementation of a data analysis tool
that can characterize features in large scienti�c datasets. There are two pri-
mary challenges in making such a tool both general and practical: �rst, the
de�nition of an interesting feature changes from domain to domain; second,
scienti�c data varies greatly in format and structure. Our solution uses a
hierarchical feature ontology that contains a base layer of objects that vio-
late basic continuity and smoothness assumptions, and layers of higher-order
objects that violate the physical laws of speci�c domains. Our implementa-
tion exploits the metadata facilities of the SAF data access libraries in order
to combine basic mathematics subroutines smoothly and handle data format
translation problems automatically. We demonstrate the results on real-world
data from deployed simulators.

1 Introduction

Currently, the rate at which simulation data can be generated far outstrips the rate
at which scientists can inspect and analyze it. 3D visualization techniques provide a
partial solution to this problem, allowing an expert to scan large data sets, identifying
and classifying important features and zeroing in on areas that require a closer look.
Pro�ciency in this type of analysis, however, requires signi�cant training in a variety
of disciplines. An analyst must be familiar with domain science, numerical simulation,
visualization methods, data formats, and the details of how to move data across
heterogeneous computation and memory networks, among other things. At the same
time, the sheer volume of these data sets makes this analysis task not only arduous,
but also highly repetitive. A logical next step is to automate the feature recognition
and characterization process so scientists can spend their time analyzing the science
behind promising or unusual regions in their data, rather than wading through the
mechanistic details of the data analysis. This paper is a preliminary report on a tool
that does so.

General de�nitions of features are remarkably hard to phrase; most of those in
the literature fall back upon ill-de�ned words like \unusual" or \interesting" or \co-
herent." Features are often far easier to recognize than to describe, and they are
also highly domain-dependent. The structures on which an expert analyst chooses to
focus | as well as the manner in which he or she reasons about them | necessarily
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depend upon the physics that is involved, as well as upon the nature of the investi-
gation. Meteorologists and oceanographers are interested in storms and gyres, while
astrophysicists search for galaxies and pulsars, and molecular biologists classify parts
of molecules as alpha-helices and beta-sheets. Data types vary | pressure, tempera-
ture, velocity, vorticity, etc. | and a critical part of the analyst's expert knowledge
is knowing which features appear in what data �elds.

In this paper, we describe a general-purpose feature characterization tool and
validate it with several speci�c instances of problems in one particular �eld: �nite
element analysis data from computer simulations of solid mechanics problems. One of
our goals is to produce a practical, useful tool, so we work with data from deployed
simulators, in a real-world format: ASCI's SAF, a lingua franca used by several
of the US national labs to read and write data �les for large simulation projects.
This choice raised some interoperability issues that are interesting from an IDA
standpoint, as discussed in section 2 below. The SAF interface provides access to a
geometric description of a computational mesh, including the spatial positions of the
mesh points (generally xy or xyz) and the type of connectivity, such as triangles or
quads, plus information about the physics variables, such as temperature or velocity.
Given such a snapshot, our goal is to characterize the features therein and generate
a meaningful report. We began by working closely with domain scientists to identify
a simple ontology1 of distinctive coherent structures that help them understand and
evaluate the dynamics of the problem at hand. In �nite-element applications, as in
many others, there are two kinds of features that are of particular interest to us:

{ those that violate the continuity and smoothness assumptions that are inherent
in both the laws of physics and of numerical simulation: spikes, cracks, tears,
wrinkles, etc. | either in the mesh geometry or in the physics variables.

{ those that violate higher-level physical laws, such as the requirement for normal
forces to be equal and opposite when two surfaces meet (such violations are
referred to as \contact problems").

Note that we are assuming that expert users can describe these features mathemat-
ically; many of the alternate approaches to automated feature detection that are
described in section 5 do not make this assumption. The knowledge engineering pro-
cess is described in section 3.1 and the algorithms that we use to encapsulate the
resulting characterizations, which rely on fairly basic mathematics, are described in
section 3.2. We have tested these algorithms on roughly a half-dozen data sets; the
results are summarized in section 4.

2 Data Formats and Issues

DMF[15] is a joint interoperability project involving several US national labs. Its goal
is to coordinate the many heterogeneous data handling libraries and analysis tools
that are used by these organizations, and to produce standards and libraries that will
allow others to exploit the results. This project is motivated by the need to perform

1 Formally, an ontology seeks to distill the most basic concepts of a system down into a set
of well de�ned nouns and verbs (objects and operators) that support e�ective reasoning
about the system.



simulations at the system level, which requires formerly independent programs from
various disciplines to exchange data smoothly. The attendant interoperability prob-
lems are exacerbated by the growing sophistication and complexity of these tools,
which make it more diÆcult to adapt them to new data formats, particularly if the
new format is richer than the old. The speci�c DMF data interface that we use, called
SAF[11], exploits metadata | that is, data about the data | to solve these prob-
lems. Used properly, metadata can make a dataset self-describing. SAF, for example,
captures not only the data values, but also the geometry and topology of the com-
putational grid, the interpolation method used inside each computational element,
and the relationships between various subsets of the data, among other things. Its
interface routines can translate between di�erent data formats automatically, which
confers tremendous leverage upon tools that use it. They need only handle one type
of data and specify it in their metadata; SAF will perform any necessary translation.
In our project, this is important in both input and output. Not only must we handle
di�erent kinds of data, but we must also structure and format the results in appro-
priate ways. As discussed at length in the scienti�c visualization literature, di�erent
users need and want di�erent data types and formats, so reporting facilities must
be exible. Moreover, the consumer of the data might not be a person, but rather
another computer tool in a longer processing pipeline. For example, output gener-
ated by the characterization routines developed in this paper might be turned into a
simple ascii report or formatted into an html page for viewing with a browser by a
human expert, and simultaneously fed to a visualization tool for automatic dataset
selection and viewpoint positioning. For all of these reasons, it is critical that data
be stored in a format that supports the generation and use of metadata, and SAF is
designed for exactly this purpose.

Metadata is a much broader research area, and SAF was not the �rst data model
to incorporate and use it. Previous e�orts included PDBlib, FITS, HDF, netCDF,
VisAD, and DX, among others[4, 16, 5, 8, 9] | data formats that enabled analysis
tools to reason about metadata in order to handle the regular data in an appropriate
manner. While metadata facilities are of obvious utility to the IDA process, they
are also somewhat of a Pandora's Box; as simulation tools increase in complexity,
e�ective analysis of their results will require a corresponding increase in the structure,
amount, and complexity of the metadata. This raises a host of hard and interesting
ontology problems, as well as the predictable memory and speed issues, which are
beyond the scope of the current paper.

The SAF libraries are currently in alpha-test release2. Because of this, few existing
simulation, analysis, and visualization tools understand SAF's native interface. Our
early development prototypes, for instance, used the SAF library directly for data
access, but had to convert to the OpenDX �le format for visualization: the very kind
of translation that SAF is intended to obviate. Because visualization is so critical to
data analysis, there has been some recent progress in adapting existing visualization
tools to parse SAF input. In the �rst stages of our project, however, such tools
did not exist, so we used OpenDX for visualization. We recently began converting
to a SAF-aware visualization tool called EnSight[1], but this has not been without

2 We are a designated alpha-test group, and a secondary goal of this project is to provide
feedback to the DMF developers, based on our experiences in designing an intelligent
data analysis tool around this format.



problems. Data interface libraries are subject to various chicken-and-egg growing
pains. The tools need not understand a format until an interesting corpus of data
exists in that format; scientists are understandably unwilling to produce data in a
format for which no analysis tools exist. Intelligent data analysis tools that take care
of low-level interoperability details can remove many barriers from this process.

3 Intelligent Analysis of Simulation Data

3.1 Knowledge Engineering

In order to automate the feature characterization process, we �rst needed to under-
stand how human experts perform the analysis. We spent several days with various
project analysts at Sandia National Laboratories, observing as they used existing
tools on di�erent kinds of data. We focused in on what they found important, how
they identi�ed and described those features, how they reasoned about which data
�elds to examine for a given stage of the process, and how the entire process changed
if they were trying to prove or disprove a particular hypothesis. Most of the features
of interest to these experts, we found, are clued from local geometry of the simulation
mesh; inverted elements with non-positive volume, spikes, wrinkles, dimples, and so
on. A smaller set of features of interest are extrema in the physics variables: hot
spots and the like. We used this information to specify a simple ontology: that is, a
set of canonical features (spikes, tears, cracks, etc.), together with mathematical de-
scriptions of each | the statistical, geometric, and topological properties that de�ne
them. We also studied how the experts wrote up, reported, and used their results.

The Sandia analysts view the mechanical modeling process in two stages. The
�rst is model debugging, wherein they ensure that the initial grid is sound, that
the coupling is speci�ed correctly between various parts of the model, and that the
modeling code itself is operating correctly. The second is the actual simulation, where
they examine the data for interesting physical e�ects: vibrational modes, areas that
exceed the accepted stress tolerances, etc. We found that features play important
roles in both phases, and that the sets of features actually overlapped. A spike in the
results, for instance, can indicate either a numerical failure or a real (and interesting)
physical e�ect. In some cases, reasoning about features let analysts identify model
errors that were undetectable by traditional numerical tests like overow, divide-by-
zero, etc. One scientist described a simulation of an automobile engine compartment,
including the front bumper. Due to a numerically innocuous error, one of the grid
points moved to a location well beyond the back end of the entire car. This obviously
non-physical situation | which was immediately visible to the analyst as a feature
| agged the model as faulty, even though no numerical fault occurred.

Note that features can involve the mesh coordinates, the physics variables, and
sometimes both. Vertical relief, for instance, is a property of surface geometry, not the
value of the physics variables upon that surface. Conversely, calculation of the highest
temperature on a surface depends solely on the physics variables. Often, analysts are
interested in features that involve both: say, the temperature or wind speed at the
highest point on the landscape, or the position of the hottest point. Often, too, their
underlying assumptions about geometry and about physics are similar, which can lead
to some terminology confusion. A spike in temperature and a spike on the surface



are similar in that both violate smoothness assumptions, but the mathematics of
their characterization is quite di�erent. This is actually a symptom of a deeper and
more interesting property of features: like data analysis itself, they are hierarchical.
All surfaces, whether numerical or physical, are generally continuous and smooth,
so tears and spikes are likely to be considered to be features in any domain. If one
knows more about the physics of the problem, other features become interesting as
well. In contact problems, for instance | where two surfaces touch one another |
the normal forces at the intersection of the two surfaces should be equal and opposite
and surfaces should certainly not interpenetrate. Violations of these physical realities
are interesting features. To capture these layers of meaning, our feature ontology is
hierarchical. It contains a baseline set of features that rest on assumptions that
are true of all physical systems, together with layers of higher-order features that
are speci�c to individual domains (and sub-domains and so on). Currently, we have
�nished implementing two such layers: the baseline one mentioned above (spikes et

al.) and a contact-problem one, which de�nes deviation from equal-and-opposite as
a feature. Both are demonstrated in section 4.

3.2 Algorithms

Given the feature ontology described in the previous section, our next task was to de-
velop algorithms that could �nd instances of those features in DMF data snapshots
and generate meaningful reports about their characteristics. In order to make our
work easily extensible, we structured the overall design so as to provide a general-
purpose framework into which characterization routines speci�c to the features of a
given domain can be easily installed. In particular, we provide several basic building-
block tools that compute important statistical, geometrical, and topological informa-
tion | about the mesh itself and about the values of the physics variables that are
associated with each point in the mesh. Their results are stored using the SAF library
format, complete with metadata that allow them to be combined in di�erent ways
to assess a wide variety of features in a range of domains. Often, there is more than
one way to �nd a single feature; a surface spike, for instance, can be characterized
using statistics (a point that is several � away from the mean) or geometry (a point
where the slope changes rapidly).

Our current set of basic building blocks is fairly straightforward:

{ normals(), which takes a DMF dataset and computes the unit-length normal
vector to each mesh element.

{ topological-neighbors(), which takes a DMF dataset and an individual mesh
element m and returns a list of mesh elements that share an edge or a vertex
with m.

{ geometric-neighbors(), which takes a DMF dataset, an individual mesh ele-
ment m and a radius r, and returns a list of mesh elements whose vertices fall
entirely within r of the centroid of m.

{ statistics(), which takes a DMF dataset and a speci�cation of one variable
(one of the mesh coordinates or physics variables) and computes the maximum,
minimum, mean, and standard deviation of its values.



{ displacements(), which takes a DMF dataset, �nds all neighboring3 pairs of
vertices, measures the xyz distance between them, and reports the maximum,
minimum, mean, and standard deviation of those distances

In addition, we provide various vector calculus facilities (e.g., dot products) and
distance metric routines.

As an example of how these tools work, consider Fig. 1. The vectors computed

Fig. 1. 3D surface mesh examples, showing the vectors computed by the normals() function.

by normals() are shown emanating from the center of each mesh face. In a regular
mesh, �nding topological neighbors could be trivial. SAF, however, is designed to
be able to represent irregular and adaptive meshes as well, so the current version of
SAF only provides neighbor information implicitly. For this reason, we preprocess
the DMF data at the beginning of the characterization run and place it in a data
structure that makes the topological information explicit. Our current design main-
tains a single list of vertices, including xyz position and the values of any associated
physics variables. Three other lists point into this vertex list | a face list, an edge
list, and a normal list | making it easy to look for shared edges or vertices and de-
duce neighbor relationships. In the examples in Fig. 1, each triangle has three \face
neighbors" and at least three other \vertex neighbors," all of which are returned
by topological-neighbors. The geometrical-neighbors function is a bit more
complicated; it calls topological-neighbors, measures the Euclidean distances be-
tween the vertices of the resulting triangles and the centroid of the original element,
discards any element whose vertices do not all fall within the speci�ed distance, and
iteratively expands on the others. The statistics() and displacements() routines
use simple traditional methods. The left-hand surface in Fig. 1, for instance, is com-
pletely at, with the exception of the bump in the foreground, and the statistics()
results reect the appropriate mean height of the surface and a very small standard
deviation. The right-hand surface uctuates somewhat, so the standard deviation is
larger. In both cases, the displacements() results would likely be uninformative
because the edge lengths of the elements are fairly uniform.

3 Topologically neighboring



There are a variety of ways, both obvious and subtle, to improve on the toolset
described above. We are currently focusing on methods from computational geom-
etry[12] (e.g., Delaunay triangulation) and computational topology, such as the �-
shape[7], and we have developed the theoretical framework and some preliminary
implementations of these ideas[13, 14]. Since features are often easier to recognize

than to describe, we are also exploring the use of machine learning techniques to
discover good values for the heuristic parameters that are embedded in these com-
putational geometry and topology algorithms.

4 Results and Evaluation

We have done preliminary evaluations of the algorithms described in the previous
section using half a dozen datasets. For space reasons, only two of those datasets are
discussed here; please see our website4 for further results, as well as color versions of
all images in this paper. The �rst dataset, termed irregular-with-spike, is shown
in Fig. 2. It consists simply of an irregular surface mesh; no physics variables are

Fig. 2. A 3D surface mesh dataset that contains a spike. By dotting the normals of neigh-
boring faces and comparing the result to the local average of the surface normals, we can
detect anomalies in the slope of the surface. Results of this algorithm are used to shade the
mesh elements in the right-hand image. Lighter elements are members of a surface spike

feature.

involved. Such a dataset might, for instance, represent the surface of a mechanical
part. As rendered, this surface contains an obvious feature | a vertical spike | to
which the eye is immediately drawn. Such a feature may be meaningful for many
domain-dependent and -independent reasons: as an indicator of numerical problems
or anomalies in the physics models, or perhaps a real (and surprising) physical ef-
fect. All of these reasons essentially boil down to an assumption of continuity and
smoothness in the surface.

The task of our spike detection algorithm is to �nd places where that smoothness
assumption is violated. To accomplish this, we begin by using the normals() and

4 http://www.cs.colorado.edu/�lizb/features.html



topological-neighbors() functions to �nd the normal vector to each mesh face
and dot it with its neighbors' normals. While this does allow us to detect sudden
variations in slope, it is inadequate for evaluating the results because anomalies
are always relative to a whole. A 1 cm bump in a surface whose mean bumpiness
is 5cm, for instance, may not be interesting; a 1 cm bump in the Hubble Space
Telecope mirror, however, is most de�nitely an issue. Moreover, it is impossible to
characterize a feature | e.g., to report the size of a bump | without having a
baseline for the measurement. For these reasons, one must incorporate scale e�ects.
We do so using the geometric-neighbors() function. In particular, we compute the
average di�erence between neighboring face normals over some5 region and compare
the individual di�erences to that average. (This is essentially a spatial equivalent to
the kinds of moving average or low-pass �ltering algorithms that are used routinely in
time-series analysis.) The right-hand image in Fig. 2 depicts the results. The normal
vectors to each mesh element are shown as before, and each mesh element is grey-
shaded according to how much the di�erence between its normal and those of its
nearest neighbors di�ers from the local average of the surface normals. The cluster
of lighter mesh elements in the bottom left corner of the right-hand image are part
of a feature | a \surface spike" | whose distinguishing characteristic is lack of
smoothness in slope.

Fig. 3 shows the chatter dataset, a simulation of a hard cylindrical pin push-
ing into a deformable block. Each point in this dataset gives the xyz position of a

Fig. 3. A simulation of a hard cylindrical pin pushing into a deformable block. The left-hand
�gure shows the geometry; at the center is a 3D closeup view of the forces at a collection
of grid points in and near the arch. In this rendering, the forces are diÆcult to see, let
alone interpret; if the pin and block are shown in a view that suppresses information that
is unrelated to the feature, however | as in the right-hand image | it is easy to identify
places where the normal forces do not balance.

vertex and the force at that vertex. The issues that arise in this example are more
complicated. Because there are physics variables involved, we are not only interested
in features that violate mesh smoothness and continuity. In this particular case, we

5 The size and shape of this region are an obvious research issue; our current solution
chooses an arbitrary square, and we are investigating how best to improve this.



are also looking for contact problems: places on the surface between the two objects
where the normal forces are not equal and opposite. Finding and describing contact
problems with the tools described in the previous section is somewhat more involved
than in the previous example, but still quite straightforward. We �rst �nd all mesh
faces that lie on the contact surface between the two objects and determine which
faces in the pin and the block touch one another. (Each object is a separate mesh,
so this amounts to traversing the boundary of each, checking for xyz proximity of
vertices and opposing faces, and building the appropriate association table.) We then
compute the normals n̂i to these faces, project the force vector f i at each face along
the corresponding n̂i in order to eliminate its tangential6 component, and �nally
compare the normal force vectors of adjacent faces to see if they are indeed of equal
magnitude and in the opposite direction. The right-hand image shows the results,
including a contact problem at one vertex, indicated by the bent vector in the middle
of the arch.

Unlike the previous example, this dataset is complex and very hard to visualize:
parts of the object obscure other parts, and it can be diÆcult or impossible to make
sense of the geometry, as is clear from the center image in Fig. 3. In situations like this,
automated feature characterization is critical, as it can �nd and highlight geometry
that is e�ectively invisible to a human user | and even choose display parameters
based on that investigation, in order to best present its results to that user (e.g.,
focusing in on the area around a feature and choosing a view that brings out its
characteristic geometry, as in the right-hand image of the pin/block system).

These methods are not only very e�ective, but also quite extensible; one can detect
a variety of other features using di�erent combinations of these same basic tools. Tears
and folds, for instance, can be agged when geometric neighbors are not topological
neighbors. Because we use the SAF format for the inputs and outputs of our toolkit
routines, it is very easy to generate, modify, and use new combinations of those tools.
The detection method for a speci�c feature, of course, is not uniquely de�ned; the
displacements() and statistics() routines can also be useful in �nding spikes, but
geometric methods that rely on normal vectors are more precise. They are also more
expensive, however, and when we begin working with the truly immense datasets
that are the target applications of this project, we will likely use the former as a �rst
pass on larger datasets, in order to identify areas for deeper study with the latter.

5 Related Work

This work draws upon ideas and techniques from a wide variety of disciplines, ranging
from mathematics to arti�cial intelligence. Space requirements preclude a thorough
discussion here; rather, we will just summarize a few of the methods and ideas that
most closely relate to this paper. Many tools in the intelligent data analysis litera-
ture[2] focus on assessing di�erent kinds of analysis tools and using that knowledge
to build toolkits that adapt the analysis to the problem at hand. Our work is similar
in spirit to many of these; indeed, our SAF-based framework solves the pernicious
interoperability problems that motivate many of these toolkits. A handful of groups

6 Tangential forces also play roles in di�erent kinds of contact problems; see our website
for more details.



in the IDA, pattern recognition, and machine learning communities speci�cally target
reasoning about features in scienti�c data. Notable instances are the spatial aggrega-
tion framework of Yip and Zhao[17], Mitchell's GENIE program[6], and the AVATAR
pattern recognition tool[3, 10], which invisibly watches as a user investigates a given
4D physics simulation dataset and deduces what s/he �nds \interesting" in that
data. Like these algorithms, our tool is designed to be both powerful and general,
rather than domain-speci�c. Unlike GENIE and AVATAR, however, we assume that
features can be described in closed form, and we are very interested both in those
descriptions and in the process of discovering them. (Indeed, section 3.1 is essentially
a chronicle of that knowledge engineering procedure.)

6 Conclusion

The goal of the intelligent data analysis tool described here is to distill a succinct
description of the interesting and important features out of a massive simulation
dataset. An automated tool like this, which produces a compact, useful description of
the dynamics, couched in the language of the domain, frees human experts to devote
their time and creative thought to other demanding tasks. It can not only classify
the features in a data set, but also signal places where the expert analyst should take
a closer look, and even aid in the presentation of the view | a critical prerequisite to
e�ective visualization of a spatially complex datasets, where anything but a selective,
narrowed focus will overwhelm the user with information. Equally important, it allows
scientists to interact with their data at the problem level, encapsulating the details of
and changes to the underlying infrastructure tools. Of course, this automated feature
characterization tool will never replace the human expert. It does not do anything
that cannot already be done by hand; it simply automates many of the more onerous,
repetitive, and/or detailed parts of the analysis process.

While the feature ontology and the characterization algorithms described in this
paper are speci�c to �nite-element simulation data, the general ideas, the notion of
a layered ontology, the mathematics routines that we use to implement the charac-
terization process, and the compositional structure of the framework within which
they are combined are far more broadly applicable. The results described here are
only preliminary, of course; full assessment of the strengths and weaknesses of this
approach will only be possible with much more experience and testing. To this end,
we have begun working on turbulent convection problems, both numerical and ex-
perimental, where experts begin by reasoning about three basic structures in the 3D
vorticity data: tubes, sheets, and cells, which play well-de�ned roles in uid trans-
port, and which can easily7 be described using the same simple tools that we describe
in section 3.2. The metadata facilities of the SAF libraries are an important part of
what makes this work easily generalizable; to apply our tool to a new kind of data,
we simply need to write the appropriate transliteration routine and pass it to SAF.
This interoperability also makes the results of our tool's analysis more broadly appli-
cable: our output contains not only raw data, but also metadata that describes the
structure, format, and content of that data. This allows consumers of these results,
whether human experts or other computer tools, to understand and use them. Incor-
porating the data analysis tool described here into an existing scienti�c computing
7 to the great dismay of the project analyst



environment would further streamline this process, and we plan to investigate this
when the next Ensight release | which will allow such modi�cations | becomes
available.

Acknowledgments: Andrey Smirnov and Stephanie Boyles contributed code
and ideas to this paper as well.
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