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Abstract. A broad range of mathematical techniques, ranging from statistics to fuzzy logic, have been used to great advantage
in intelligent data analysis. Topology – the fundamental mathematics of shape – has to date been conspicuously absent from
this repertoire. This paper shows how topology, properly reformulated for a finite-precision world, can be useful in intelligent
data analysis tasks.

1. Introduction

Topology is the fundamental descriptive machinery for shape. Putting its ideas into real-world practice,
however, is somewhat problematic, as traditional topology is an infinite-precision notion, and real data
are both limited in extent and quantized in space and time. The field ofcomputational topologygrew out
of this challenge [5,7]. Among the formalisms in this field is the notion ofvariable-resolution topology,
where one analyzes the properties of the data – e.g., the number of components and holes, and their
sizes – at a variety of different precisions, and then deduces the topology from the limiting behavior of
those curves. This framework, which was developed by one of the authors of this paper (Robins) [18–20],
turns out to be an ideal tool for intelligent data analysis.

Our approach to assessing connectedness and components in a data set has its roots in the work of
Cantor. We define two points asepsilon(ε) connectedif there is anε-chain joining them; all points
in an ε-connected setcan be linked by anε-chain. For the purposes of this work, we use several of
the fundamental quantities introduced in [19]: the numberC(ε) and maximum diameterD(ε) of the
ε-connected components in a set, as well as the numberI(ε) of ε-isolated points –ε-components that
consist of a single point. As demonstrated in [18,20], one can compute all three quantities for arange
of ε values and deduce the topological properties of the underlying set from their limiting behavior. If
the underlying set is connected, the behavior ofC andD is easy to understand. Whenε is large, all
points in the set areε-connected and thus it has oneε-component (C(ε) = 1) whose diameterD(ε) is
the maximum diameter of the set. This situation persists untilε shrinks to thelargestinterpoint spacing,
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Fig. 1. Computing connectedness: (a) Theminimal spanning tree(MST) whose edges connect nearest neighbors in a data set
(b) This set contains oneε-connected component ifε > ε∗; if ε is slightly less thanε∗, the number ofε-connected components
is two, and so on.

at which pointC(ε) jumps to two andD(ε) shrinks to the larger of the diameters of the two subsets, and
so on.

Whenε reaches thesmallestinterpoint spacing, every point is anε-connected component,C(ε) = I(ε)
is the number of points in the data set, andD(ε) is zero. If the underlying set is a disconnected fractal,
the behavior is similar, except thatC andD exhibit a stair-step behavior with changingε because of
the scaling of the gaps in the data. Whenε reaches the largest gap size in the middle-third Cantor set,
for instance,C(ε) will double andD(ε) will shrink by 1/3; this scaling will repeat whenε reaches the
next-smallest gap size, and so on. All of these results are derived, explained, and demonstrated in detail
in [19].

Our computer implementation of these connectedness calculations relies on constructs from discrete
geometry: the minimal spanning tree (MST) and the nearest neighbor graph (NNG). The former is the
tree of minimum total branch length that spans the data; see Fig. 1(a) for an example. To construct the
MST, one starts with any point in the set and its nearest neighbor, adds the closest point to this pair, and
repeats until all points are in the tree. This is Prim’s algorithm which more formally, grows the MST by
adding at each stage an edge(x, y) and vertexy to the tree if(x, y) is minimal among all edges where
x is in the tree andy is not. The NNG is a directed graph that has an edge fromxA to xB if xB is the
nearest neighbor ofxA. To construct it, one starts with the MST and keeps the shortest edge emanating
from each point. Both algorithms may be easily implemented inRd; the computational complexity of
the MST isO(N 2) in general andO(N log N) in the plane, whereN is the number of data points. To
computeC andI from these graphs, one simply counts edges.C(ε), for example, is one more than the
number of MST edges that are longer thanε, andI(ε) is the number of NNG edges that are longer than
ε. DiametersD(ε) of ε components are then found using standard computational geometry techniques.
Note that one must count NNG edges with multiplicity, sincexA beingxB ’s nearest neighbor does not
imply thatxB is xA’s nearest neighbor (i.e., if a third pointxC is even closer toxA). Note, too, that the
MST and NNG need only be constructed once; all of theC andI information for differentεs is captured
in their edge lengths. Finally, to identifyε-components, one simply removes edges that are longer than
ε.

These trees and the information encoded in their edges are extremely useful in intelligent data analysis.
A vertical jump inC(ε), for instance, occurs at anε value that corresponds to the size of a gap in the
dataset.D(ε) is of obvious utility in describing the sizes of objects, andI(ε) can be used to filter out
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noise. All of these quantities mesh well with experimental reality: theC(ε) plot for a satellite image of
the Arctic ice pack, for instance, captures exactly how many ice floes will be resolved if the instrument
has a precision of 10 m, 5 m, 1 m, etc. The examples in Section 2 expand upon some of these ideas.
MSTs can also be used to aggregate points into structures, and so they have been widely used in the kinds
of clustering tasks that arise in pattern recognition [8] and computer vision [4]. Their branching structure
can also be exploited – e.g., to identify orbit types in dynamical systems [25] or to find discontinuities in
bubble-chamber tracks [26]. Clustering and coherent-structure extraction are not the only applications
of the MST; additive noise creates small transverse ‘hairs’ on these trees, and so filtering out those points
is simply a matter of pruning the associated edges. Section 3 covers this idea in more depth.

Another fundamental topological property is the number, size, and shape of theholesin an object. One
way to characterize this is via homology. This branch of topology describes structure using algebraic
groups that reflect the connectivity of an object in each dimension. The rank of each homology group
is called theBetti number, bk. The zeroth-order Betti number,b0, counts the number of connected
components. Geometric interpretations of the other Betti numbers depend on the space the object lives
in: in 2D, b1 is the number of holes, while in 3Db1 is (roughly speaking) the number of tunnels and
b2 is the number of enclosed voids. See our website [1] for some images that make these definitions
more concrete. The definition of the homology groups requires a discrete geometric representation of
the object, e.g., a triangulation of subsets of 2D, and simplicial complexes in three or more dimensions.
See Munkres [13] for further details.

In order to put these hole-related ideas into computational practice, we use theα-shape algorithm
developed by Edelsbrunner [10]. The basic idea is to “fatten” the data by forming itsα-neighborhood (a
union of balls of radiusα centered at each data point). Whenα is large (on the order of the diameter of
the data) theα-neighborhood is a single, convex connected blob. Asα decreases, theα-neighborhood
shrinks and more shape detail is resolved. Whenα is just small enough that a ball of radiusα can
fit inside the data without enclosing any data points, a hole is created in theα-neighborhood. For
very smallα, the individual data points are resolved. The implementation of theα-shape algorithm is
based on the Voronoi diagram and its dual Delaunay triangulation, commonly used constructions from
computational geometry. The Betti numbers are computed from triangulations that capture the topology
of the coarse-grained data at the differentα-resolutions. These calculations of the Betti numbers are
non-trivial in general, but fast algorithms have been developed forα-shapes of 2D and 3D data [6], and
associated software is available on the world-wide web [2].

As in the connectedness discussion above, one can compute the number of holes in anα-neighborhood
of a data set while varyingα, and then use that information to deduce the topological properties of
the underlying set [17,18]. There is one important difference, however. Thegeometryof the set can
create holes in theα-neighborhoods, even if the set contains no holes. This effect is demonstrated in
Fig. 2. Mathematically, this problem can be resolved by incorporating information about how the set
maps inside itsα-neighborhood. This leads to the definition of apersistent Betti number, which was
introduced in [17]: forε < α, bk(ε, α) is the number of holes in theα-neighborhood for which there
are corresponding holes in theε-neighborhood (equivalently, the number of holes in theε-neighborhood
that do not get filled in by forming the fatterα-neighborhood). These persistent Betti numbers are well
defined for sequences of complexesthat provide successively better approximations to a manifold [17] and
are computable using linear algebra techniques. Recently, Edelsbrunner and collaborators have made
a similar definition of persistent Betti number specifically forα-shapes, and devised an incremental
algorithm for their quantity [9].
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Fig. 2. Computing holes:α-neighborhoods can be used to detect whether the Arctic icepack image in part (a) contains a bay,
and, if so, how wide its mouth is. (b) and (c) showα-neighborhoods of the set of white (ice) pixels in (a) for a few interesting
α values.

While the non-persistent holes effect makes it difficult to make a correct diagnosis of the underlying
topology, it has important implications for intelligent data analysis because it gives us geometric infor-
mation about the embedding of the set in the plane. This can be very useful in the context of coherent
structure extraction. Consider a narrow bay in an icepack, as shown in Fig. 2.

In this case,b1(α) computed for the set of white (ice) pixels would be zero forα smaller than half the
width of the bay, zero forα larger than the largest radius of its interior, and one in between – that is,
where anα ball fits inside the bay, but not through its mouth. Note that theα value where the spurious
hole first appears is exactly the half-width of the entrance to the bay. If there were ahole in the ice,
rather than a bay,b1(α) would be a step function: zero whenα is greater than the largest radius of the
hole and one when it is less. This technique for finding and characterizing coherent structures whose
defining properties involve holes and gaps of various shapes – ponds, isthmuses, channels, tunnels, etc.
– is potentially quite useful in intelligent data analysis.

Note that theα-shapes algorithm was written for floating-point data, not digital-image data. We
emphasize that the variable-resolution topology measures are not dependent on the numerical context.
More efficient implementations for pixel- and voxel-based images need to be developed. The examples
following in Section 2 form a proof-of-concept.

2. Coherent structure extraction

In this section, we present three examples that demonstrate how to use our variable-resolution topology
techniques to find coherent structures in aerial images of sea ice.1 Scientists look for several things in
these kinds of images: open water or “leads,” ice floes, and melt ponds, all of which are visible in
Fig. 3. Climatology studies that track the seasonal evolution of these coherent structures are a major
current thrust of Arctic science, but they require an automated way of analyzing large numbers of images.
Traditional image-processing and machine-learning tools can help with tasks like this, to a point – e.g.,
edge-finding, contrast enhancement, etc. – but topology-based methods are an even better solution. The
following paragraphs treat three examples in detail: finding a lead through an icepack, distinguishing
regions of different ice/water concentration, and studying how the number and size of melt ponds are
distributed in sea ice.

1courtesy of D. Perovich from CRREL.
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Fig. 3. The arctic ice pack is made up of open water, ice, and melt ponds, which image as black, white, and grey, respectively.
Studying the climatology of this system – the seasonal evolution of the different kinds ofcoherent structures– is a major current
thrust of Arctic science.

The size, shape, and position of floes and leads is of obvious interest to travelers in the polar regions.
Finding a path for a ship through a complicated region of the ice pack, in particular, is a common practical
problem, and the variable-resolution computational topology techniques described in Section 1 are quite
useful in doing so. Consider a 20 m-wide ship that must traverse the patch of ocean depicted in Fig. 4(a),
from left to right. Solving this problem requires assessing the holes in the ice, so we threshold the data
and discard the dark water pixels, then apply theα-shape algorithm with a radiusα = 10. The results,
shown in Fig. 4(b), identify all regions that are at least 20 m wide. The next step is to use standard
computational geometry techniques [16] on these regions to ascertain which ones touch both sides of
the image and then determine which is the shortest.2 Parts (c) and (d) of the Figure show the effects of
raisingα beyond 10 m, demonstrating the relationship between the channel shape and the holes in the
α-neighborhood – e.g., successively resolving the various tight spots, or identifying regions of water that
are at leastn meters from ice.

More generally, this variable-resolution analysis can be used to assess the mix of water and ice in a
region – not just the relative area fractions (which can be done by counting black and white pixels), but
also the distribution of sizes of the regions involved – or to find and characterize regions of different ice
concentration. Depending on the task at hand, one can analyze either the water pixels (whereα-holes are
α-size ice floes) or the ice pixels, where holes are leads. When the ice is close to solid, as in Fig. 5(a),
the narrow water channel is resolved as a smallα-hole in the set of ice pixels, similar to the lead in the
previous paragraph. When the image contains large areas of open water and a few floes, as in part (c), an
α-shape analysis of the water pixels resolves a few large holes over a wide range ofαs – after a band of
smallerαs where theα-neighborhoods are filling in the various gaps and bumps in the floes and creating
spurious holes, as discussed in conjunction with Figs 2 and 4. The middle image is more interesting;
the wide distribution of floe sizes translates to a wideα range where a small change in that parameter

2Note that this development assumes a circular ship; for oblong ships, one should use anα value that is the largest chord of
the hull.
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Fig. 4. Usingα-shapes to find a path through an icepack: (b), (c), and (d) show three differentα-neighborhoods of the set of
ice pixels in (a).

resolves a few new holes in the set of water pixels (i.e., floes). All of these results accurately reflect
important properties of the data.

The temporal evolution of the albedo of Arctic sea ice is of great importance to climate modelers
because of its role in heat transfer. A key factor governing the sea-ice albedo in summer is the size
distribution of the melt ponds, which appears to take the form of a power law[15]. We can easily
automate these distribution calculations usingα-shapes. The first step is to threshold the data so that
the ‘nonpond’ points (both the ice and the water) are black; the second is to look for holes in that data.
The results, shown in Fig. 6(a), corroborate the power-law distribution hypothesis quite nicely; after
an initial region below aboutlog α = 0.3, where changes in this parameter are resolving promontories
and bays in the melt ponds, the log-log plot is fairly linear, with a least squares fit to the slope giving
−1.7. Part (b) reproduces the corresponding figure from [15] for comparison. In that paper the slope
was estimated as−3/2, which is within around10% of our result. We can obtain similar curves using
the connectedness tools described in Section 1: e.g., computing a minimal spanning tree of the ‘pond’
points in the image, as in Fig. 6(c), and then extracting the connected components and computing their
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Fig. 5. Usingα-shapes to distinguish different ice/water distributions: (a) almost-solid ice (b) a lead filled with various-size
floes (c) open water with a few big floes. Anα-shapes analysis of these images yields a direct measure of the morphology of
the ice and water.

areas and/or diameters.
Our next step will be to combine these notions of multiple-resolution topology with some ideas

from spatial statistics and artificial intelligence in order to handle the ill-defined nature of real coherent
structures and to recognize the spatial and temporal patterns in which those structures move, evolve,
and interact. Spatial statistics are useful in this application because computational topology produces
aggregate measures over a whole dataset. Adding a sliding window to the process, and manipulating
its geometry intelligently – an approach that we termtopospatial analysis– allows one to distinguish
sub-regions where those measures are different. Artificial intelligence (AI) techniques are useful because
coherent structures are not crisp. The Gulf Stream, for instance, is a hot-water jet extending from the
eastern seaboard of the US into the Atlantic. It does not have a natural, well-defined boundary. Rather, the
temperature at its edges falls off smoothly, and so any threshold-based definition is necessarily somewhat
arbitrary. Moreover, coherent structures are much easier to recognize than to describe, let alone define
in any formal way. The AI community has developed a variety of representations and techniques for
problems like these, and these solutions mesh well with topospatial analysis.

3. Filtering

Real-world data invariably contain noise of one form or another. Traditional linear filters are useful
in removing some kinds of noise, but not all. Chaotic behavior, for instance, is both broad band and
sensitively dependent on system state, so linear or Fourier-based filters – which simply remove all signal
in some band of the power spectrum – can alter important features of the dynamics, and in a significant
manner [24]. In cases like this, topology-based filtering can be a much better solution. As mentioned
in Section 1, noise often manifests as isolated points (e.g., from an intermittent glitch in a sensor), and
variable-resolution topology is an effective way to identify these points. Figure 7 demonstrates the basic
ideas.

The spanning tree clearly brings out the displacement of the noisy points from the rest of the orbit, both
in direction and in edge length. Specifically, if the noise magnitude is large compared to the inter-point
spacing, the edges joining the noisy points to the rest of the tree are longer than the original edges. (Of
course, if the magnitude of the noise issmallcompared to that spacing, the associated MST edges will
not be unusually long, and the noisy points are not so obvious.) This kind ofseparation of scaleoften
arises when two processes are at work in the data – e.g., signal and noise. Because variable-resolution
topology is good at identifying scale separation, we can use it to identify and remove the noisy points.
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Fig. 6. Computational topology and melt ponds: (a) Anα-shapes analysis of the ponds in an icepack image. (b) Corresponding
figure from [15] (c) Connected components in melt-pond data.

The first step is to look for a second peak in the edge-length distribution of the MST (equivalently, a
shoulder in the plotI(ε) of the number of isolated points as a function ofε). The maximum edge length
of the MST of thenon-noisy data occurs in the interval between the two peaks (or at the location of the
I(ε) breakpoint). At that value, most of the noisy points – and few of the regular points – areε-isolated.
The next step is to identify and remove all MST edges that exceed that length. Note that anε-isolated
noisy point will lose all its connections to the MST and the edge-pruning procedure will successfully
remove the point. If the noisy point was a terminal node of the MST, the rest of the tree structure is
unaffected. A slight complication arises if a long edge creates a “bridge” between relevant subsections of
the tree. In this case, deleting points connected to the tree by the identified MST edge will discard useful
data.3 Our approach in this case is simply to remove the edge and work with a disconnected version of
the tree. This works well, since the quantity of interest in our filtering algorithm isI(ε), notC(ε).

Part (c) of the Figure shows the results; in this case, the topology-based filter removed 534 of the 545

3We found that this situation rarely occurs in practice if the sampling rate of the data is sufficient.
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Fig. 7. The effects of noise upon data topology. The dataset in part (a) is a canonical example in dynamical systems – the
Lorenz attractor – each point of which was perturbed, with probability 0.01, by a small amount of additive noise. The MST
in part (b) clearly shows these noisy points. Part (c) shows the same data set after processing with a topology-based filter that
prunes the ‘hairs’ off the MST.

noisy points and 150 of the 7856 non-noisy points. This translates to 98.0% success with a 1.9% false
positive rate. These are promising results – better than any linear filter, and comparable to or better than
the noise-reduction techniques used by the dynamical systems community[3]. Increasing the pruning
length, as one would predict, decreases the false-positive rate; somewhat less intuitively, though, larger
pruning lengths donot appear to significantly affect the success rate – until they become comparable
to the length scales of the noise. As described in [21], these rates vary slightly for different types and
amounts of noise, but remain close to 100% and 0%; even better, the topology-based filter does not
disturb the dynamical invariants like the Lyapunov exponent.

While topology-based filtering is very effective, it does come with some caveats. For example, the
method simplyremovesnoisy points; it does not deduce where each one ‘should be’ and move it in that
direction. There are several obvious solutions to this, all of which add a bit more geometry into the
recipe – e.g., averaging the two points on either side of the base of the edge that connects an isolated
point to the rest of the trajectory. Moreover, noise does not move points around in raster images; rather,
it simply reshades pixels. The computer vision community distinguishes these two kinds of noise as
“salt and pepper” and “distortion,” respectively. Because the metric used in the MST captures distances
between points, it is more effective at detecting the latter than the former.

4. Conclusion

The mathematical framework of variable-resolution topology has tremendous potential for intelligent
data analysis. It is, among other things, an efficient way to automate the process of finding and
characterizing coherent structures. Figure 6(b), for instance, was constructed by hand-processing roughly
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2000 images, which required roughly 50 working days [14]; Figure 6(a) required only a few minutes of
CPU time. Because it reveals separation of scale, variable-resolution topology can also be useful in noise
removal. In a series of numerical experiments, a topology-based filter removed close to 100% of the
noisy points from dynamical system data sets, with a false-positive rate of only a few percent. Separation
of scale is fundamental to many other processes whose results one might be interested in untangling, so
this method is by no means limited to filtering applications – or to dynamical systems.

There have been a few other topology-based approaches to filtering. Mischaikow et al. [12], for
example, use algebraic topology to construct a coarse-grained representation of the data. This effectively
finesses the noise issue, and thus constitutes a form of filtering. Rather than use algebraic topology to
construct a useful coarse-grained representation of the dynamics, our approach usesgeometrictopology
to remove noisy points while working in the original space, which allows us to obtain much finer-grained
results.

A tremendous volume of papers on techniques for reasoning about the structure of objects has appeared
in various subfields of the computer science literature. Very few of these papers focus on distilling out
the topology of the coherent structures in the data. Those that do either work at the pixel level (e.g., the
work of Rosenfeld and collaborators [22]) or are hand-crafted for a particular application (e.g., using
wavelets to find vortices in images of sea surface temperature [11]), and all are constrained to two or three
dimensions. Our framework is algorithmically much more general, and it works in arbitrary dimension.
Many geographic information systems [23] and computer vision [4] tools incorporate simple topological
operations like adjacency or connectedness; these, too, generally only handle 2D gridded data, and none
take varying resolution into account – let alone exploit it.
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