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Abstract. The goal of input-output modeling is to apply a test input to
a system, analyze the results, and learn something useful from the cause-
effect pair. Any automated modeling tool that takes this approach must
be able to reason effectively about sensors and actuators and their in-
teractions with the target system. Distilling qualitative information from
sensor data is fairly easy, but a variety of difficult control-theoretic issues
— controllability, reachability, and utility — arise during the planning
and execution of experiments. This paper describes some representations
and reasoning tactics, collectively termed qualitative bifurcation analy-
sis, that make it possible to automate this task.

1 Input-Output Modeling

System identification (SID) is the process of inferring an internal ordinary dif-
ferential equation (ODE) model from external observations of a system. The
computer program pret[5] automates the SID process, using a combination
of artificial intelligence and system identification techniques to construct ODE
models of lumped-parameter continuous-time nonlinear dynamic systems. As di-
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Fig. 1. pret uses sensors and actuators to interact with target systems in an input-
output approach to dynamical system modeling.

agrammed in Fig. 1, pret uses domain knowledge to combine model fragments
into ODEs, then employs actuators and sensors to learn more about the target
system, and finally tests the ODEs against the actuator/sensor data using a
body of mathematical knowledge encoded in first-order logic[20].
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This input-output (I/O) approach to dynamical system modeling, which dis-
tinguishes pret from other AI modeling tools, is very powerful and also ex-
tremely difficult. Distilling available sensor information into qualitative form is
reasonably straightforward, as described in our IDA-97 paper[3], but reasoning
about the information so derived is subtle and challenging. Dealing with actu-
ators is even harder because of the nonlinear control theory that is involved.
Among other things, determining what experiments one can perform from the
system’s present state involves complicated reasoning about controllability and
reachability. In an automated framework, it is also important to reason about
what can be learned from a given experiment. During the input-output modeling
process, pret must solve all three of these problems. That is, given a black-box
system, a partial measurement of its current state, some knowledge about the
available actuators, and some preliminary ideas about a candidate model, pret

must be able to decide what experiments are possible and useful. This is a dif-
ficult, open problem for nonlinear systems, even for human experts. The topic
of this paper is a set of knowledge representation and reasoning techniques that
make it possible to automate this task.

In linear systems these problems are relatively easy. Engineering approaches
to linear input-output analysis are well developed; standard techniques for ex-
citing different useful states of the system[13] include changing the type (e.g.,
ramp, step) or parameters (e.g., amplitude, frequency) of the input. The impulse
response of a system — its transient response to a quick kick x(t0) = 1; x(t) =
0 ∀ t 6= t0 — is particularly useful. The natural resonant and anti-resonant fre-
quencies appear as spikes and the mode shapes between those spikes can show
whether a vibrating mechanical system is mass- or stiffness-dominated[15].

Nonlinear systems pose a far more imposing challenge to input-output model-
ing; their mathematics is vastly harder, and many of the analysis tools described
in the previous paragraph do not apply. Almost all forms of transient analysis
(e.g., step or impulse response) are useless in nonlinear problems, as is frequency
response; the concept of a discrete set of spectral components simply does not
make sense. Because of this, nonlinear dynamicists typically allow transients to
die out and then reason about attractors in the phase or state space, and how the
geometry and topology of those attractors change when the system parameters
are varied.

Our approach targets the problems that arise in reasoning about multiple
set of observations that arise in phase-portrait analysis of complex systems. In
particular, we use a combined state/parameter space and decompose it into dis-
crete regions, each associated with an equivalence class of dynamical behaviors,
derived qualitatively using geometric reasoning. These discrete regions describe
the behavior of the system in a uniquely powerful way. As each trajectory is
effectively equivalent, in a well-known sense, to all the other trajectories in the
same region, one can describe the behavior in that region in a much simpler way,
which results in ease of analysis — and great computational savings.

The representation described in this paper — an abstraction/extension of
the traditional nonlinear analysis technique termed bifurcation analysis — al-



lows pret’s intelligent sensor analysis and actuator control modules to reason
effectively about multiple sets of observations over a given system. Coupled with
a knowledge representation and reasoning framework that adapts smoothly to
how much one knows about the system (e.g., using linear analysis when appropri-
ate), which is described in another paper[9], this representation allows pret to
reason effectively about input-output modeling of nonlinear dynamical systems.

To set the context, the following section gives a brief overview of pret. We
then focus in on the input-output modeling phase, describe our representation
and reasoning framework, and show how pret exploits that framework.

2 PRET

As outlined in the previous section, pret[5] is an automated tool for nonlinear
system identification (SID). Its inputs are a set of observations of the outputs of
a black-box system, and its output is an ordinary differential equation (ODE)
model of the internal dynamics of that system. pret’s architecture wraps a
layer of artificial intelligence (AI) techniques around a set of traditional formal
engineering methods like impulse-response analysis, nonlinear regression, etc.
The AI layer combines several forms of reasoning,1 via a special first-order logic
inference system[18, 20] to intelligently assess the task at hand; it then reasons
from that information to automatically choose, invoke, and interpret the results
of appropriate lower-level techniques. This framework lets pret shift fluidly
back and forth between domain-specific reasoning and general mathematics to
navigate efficiently through an exponential search space of possible models. This
approach has met with success in a variety of simulated and real problems,
ranging from textbook systems to real-world engineering applications.

pret takes a “generate-and-test” approach to model building. It uses domain-
specific knowledge to assemble combinations of user-specified and automatically
generated ODE fragments into a candidate model;2 it tests that model by per-
forming a series of factual inferences about the ODE and the observations and
then using a theorem prover[19] to search for contradictions in those sets of
facts. The technical challenge here is efficiency: the search space is huge, and so
pret must identify contradictions as quickly, simply, and cheaply as possible.
The key to doing so is to classify model and system behavior at an appropriate
qualitative level and to exploit all available domain-specific knowledge in the
most useful way. Symbolic algebra can be used to remove huge branches from
the search space. If the target system is known to be chaotic, for instance, all
linear ODEs can be immediately discarded, and the computation involved —
calculating the Jacobian and ascertaining that all of its entries are constant —
requires only simple, inexpensive symbolic reasoning. In other situations, prun-

1 qualitative reasoning, qualitative simulation, numerical simulation, geometric reason-
ing, constraint propagation, resolution, reasoning with abstraction levels, declarative
meta-control, and a simple form of truth maintenance.

2 In mechanics, for instance, pret uses Newton’s laws to combine force terms; in
electronics, it uses Kirchhoff’s laws to sum voltages in a loop or currents in a cutset.



ing a single leaf off the tree of possible models can be extremely expensive (e.g.,
estimating parameter values for a nonlinear ODE prior to a final corroborative
simulation/comparison run, which is a complicated global optimization prob-
lem[4]). Some analysis methods, such as phase-portrait analysis, apply to all
ODEs, whereas others are only meaningful in specific domains (e.g., creep tests
in viscoelastic systems). Orchestrating this complex reasoning process is a very
difficult problem; its solution requires carefully crafted knowledge representation
frameworks[9] that allow for an elegant formalization of the essential building
blocks of an engineer’s knowledge and reasoning, and powerful automated ma-
chinery[20] that uses the formalized knowledge to reason flexibly about a variety
of modeling problems.

The input-output modeling strategies that are the topic of this paper play
important roles in both the generate and the test phase. The “input” half of
pret’s intelligent sensor/actuator analysis and control module — which is re-
viewed briefly in the following sections and covered in detail in [3] — uses geo-
metric reasoning and delay-coordinate embedding to distill abstract, useful qual-
itative information from a highly specific numeric sensor data set. The “output”
part, described in the following sections, reasons about multiple sets of obser-
vations about a given system using a new knowledge representation called the
qualitative state/parameter space and an associated reasoning strategy termed
qualitative bifurcation analysis, both of which are AI-adapted versions of well-
known nonlinear dynamics techniques. For more details on the rest of pret —
issues, solutions, internal representations, encoded knowledge bases, examples
solved, etc. — please consult the papers cited in the previous two paragraphs.

3 Qualitative Bifurcation Analysis

One of the goals of the qualitative reasoning (QR) community[12] is to abstract
specific instances of behavior into more-general descriptions of a system. An
80kg adult bouncing on the end of a bungee cord, for instance, will produce a
different time series from a 50kg child, but both produce similar damped oscil-
latory responses. Reasoning about these two behaviors in their time-series form
can be difficult, as it requires detailed examination of the amplitude decay rate
of and the phase shift between two decaying sinusoids. The state-space repre-
sentation, which suppresses the time variable and plots position versus velocity,
brings out the similarity between these two behaviors in a very clear way. Both
bungee jumps, for example, manifest on a state-space plot as similar decaying
spirals. Automated phase-portrait analysis techniques[2, 21, 22], which combine
ideas from dynamical systems, discrete mathematics, and artificial intelligence,
generate qualitative descriptions that capture this information.

A discretized version of the state-space representation can abstract away
many low-level details about the dynamics of a system while preserving its impor-
tant qualitative properties. The cell-to-cell-mapping formalism[14], for instance,
discretizes a set of n-dimensional state vectors onto an n-dimensional mesh of
uniform boxes or cells. The circular state-space trajectory in Fig. 2(a), for exam-
ple, — a sequence of two-vectors of floating-point numbers — can be represented
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Fig. 2. Identifying a limit cycle using the cell-dynamics method.

by the cell sequence [. . . (0,0) (1,0) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) . . . ]. Because
multiple trajectory points are mapped into each cell, this discretized represen-
tation of the dynamics is significantly more compact than the original series of
floating-point numbers and therefore much easier to work with. Using this repre-
sentation, the dynamics of a trajectory can be quickly and qualitatively classified
using simple geometric heuristics — in this case as a limit cycle. pret’s intelli-
gent sensor analysis procedures use this type of discretized geometric reasoning
to “distill” out the qualitative features of a given state-space portrait, allowing
pret to reason about these features at a much higher (and cheaper) abstraction
level. This scheme is covered in detail in [3].

This is only, however, a very small part of the power of the qualitative phase-
portrait representation. Dynamical systems can be extremely complicated; at-
tempting to understand one by analyzing a single behavior instance — e.g., sys-
tem evolution from one initial condition at one parameter value, like Fig. 2(a)
— is generally inadequate. Rather, one must vary a system’s inputs and control
parameters and study the change in the response. Even in one-parameter sys-
tems, however, this procedure can be difficult; as the parameter is varied, the
behavior may vary smoothly in some ranges and then change abruptly (“bifur-
cate”) at critical parameter values. A thorough representation of this behavior,
then, requires a “stack” of state-space portraits: at least one for each interest-
ing and distinct range of values. Constructing such a stack requires automatic
recognition of the boundaries between these ranges, and the cell dynamics rep-
resentation makes this very easy. Fig. 2(b), for example, shows another limit
cycle trajectory — one with different geometry but identical topology. The key
concept here is that a set of geometrically different and yet qualitatively similar
trajectories — an “equivalence class” with respect to some important dynamical
property — can be classified as a single coherent group of state-space portraits.
This is the basis of the power of the techniques described in this paper.

Consider, for example, a driven pendulum model described by the ODE

θ̈(t) +
β

m
θ̇(t) +

g

l
sin θ(t) =

γ

ml
sinαt

with mass (m), arm length (l), gravity constant (g), damping factor (β), drive
amplitude (γ) and drive frequency (α). m, l, g and β are constants; the state
variables of this system are θ and ω = θ̇. In many experiments, the drive am-
plitude and/or frequency are controllable: these are the “control parameters” of
the system. The behavior of this apparently simple device is really quite com-



plicated and interesting. For low drive frequencies, it has a single stable fixed
point; as the frequency is raised, the attractor undergoes a series of bifurcations
between chaotic and periodic behavior. These bifurcations do not, however, nec-
essarily cause the attractor to move. That is, the qualitative behavior of the
system changes and the operating regime (in state space) does not. Traditional
analysis of this system would involve constructing state-space portraits, like the
ones shown in Fig. 2, at closely spaced control parameter values across some
interesting range; this is the bifurcation analysis procedure introduced in the
previous paragraph. Traditional AI/hybrid representations do not handle this
smoothly, as the operating regimes involved are not distinct. If, however, one
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Fig. 3. A state/parameter (S/P) space portrait of the driven pendulum: a parameter-
ized collection of state-space portraits of the device at various Drive Frequencies.

adds a parameter axis to the state space, most of these problems vanish. Fig. 3
describes the behavior of the driven pendulum in this new state/parameter-space
(S/P-space) representation. Each θ, ω slice of this plot is a state-space portrait,
and the control parameter varies along the Drive Frequency axis.

Our final step is to combine this state/parameter-space idea with the qual-
itative abstraction of cell dynamics, producing the qualitative state/parameter
space (QS/P-space) representation that is the basis of the KRR framework that
is the topic of this paper. A QS/P-space portrait of the driven pendulum is
shown in Fig. 4. This representation is similar to the S/P-space portrait shown
in Fig. 3, but it groups similar behaviors into equivalence classes, and then uses
those groupings to define the boundaries of qualitatively distinct regions.

This qualitative state/parameter-space representation is an extremely pow-
erful modeling tool. One can use it to identify the individual operating regimes,
then create a separate model in each, and perhaps use a finite-state machine to
model transitions between them. More importantly, however, the QS/P-space
representation lets the model builder leverage the knowledge that its regions —
e.g., the five slabs in Fig. 4 — all describe the behavior of the same system, at
different parameter values. This is exactly the type of knowledge that one needs
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Fig. 4. A qualitative state/parameter-space (QS/P-space) portrait of the driven pen-
dulum. This is an abstraction of the state/parameter space portrait shown in Fig. 3; it
groups qualitatively similar behaviors into equivalence classes to define the boundaries
of qualitatively distinct regions of state/parameter space.

in order to plan how to learn more about a system by changing its inputs and
observing the results. The remainder of this paper expands upon these ideas, de-
scribing how the QS/P-space representation helps pret perform input-output
modeling of dynamical systems.

4 Input-Output Modeling in PRET

The goal of input-output modeling is to apply a test input to a system, analyze
the results, and learn something useful from the cause/effect pair. In this section,
we describe how pret reasons about this process using the QS/P representation
introduced in the previous section.

As described in Sect. 2, pret takes a generate-and-test approach, using a
small, powerful domain theory to build ODE models and a larger, more-general
ODE theory to test those models against the known behavior of the system. I/O
modeling using the QS/P representation contributes to this process in a variety
of ways. Firstly, it allows pret to reason effectively about test inputs; a good test
input excites the behavior in a useful but not overwhelming way, and choosing
such an input is nontrivial. The representation described in the previous section
and pictured in Fig. 4 also allows pret to reason about sensible hypothesis
combinations — a process without which the generate phase would be reduced
to blind enumeration of an exponential number of candidate models. Finally,
qualitative I/O modeling techniques help pret reason about state variables and
observations — information whose sole source would otherwise be the user.

The “input” part of pret’s input-output reasoning takes place in the intelli-
gent sensor data analyzer[3]. This module first reconstructs any hidden dynamics
from the sensor data and then analyzes the results using geometric reasoning.
The first of these two steps is necessary because fully observable systems, in
which all of a system’s state variables can be measured, are rare in normal



engineering practice. Often, some of the state variables are either physically
inaccessible or cannot be measured with available sensors. This is control the-
ory’s observer problem: the task of inferring the internal state of a system solely
from observations of its outputs. Delay-coordinate embedding[1], pret’s solution
to this problem, creates an m-dimensional reconstruction-space vector from m
time-delayed samples of data from a single sensor. The central idea is that the
reconstruction-space dynamics and the true (unobserved) state-space dynam-
ics are topologically identical. This provides a partial solution to the observer
problem, as a state-space portrait reconstructed from a single sensor is quali-
tatively identical to the true multidimensional dynamics of the system.3 Given
a reconstructed state-space portrait of the system’s dynamics, the intelligent
sensor data analyzer’s second phase distills out its qualitative properties using
the cell dynamics paradigm discussed in Sect. 3. The results of reconstructing
and analyzing the sensor data are a set of qualitative observations similar to
those a human engineer would make about the system, such as “the system is
oscillating.” This information is useful as it not only raises the abstraction level
of pret’s reasoning about models but also is critical to the mechanics of the
qualitative bifurcation analysis process, as described later in this section.

Reasoning about actuators is much more difficult, so the development of
pret’s intelligent actuator controller has been slow. The problem lies in the
inherent difference between passive and active modeling. It is easy to recognize
damped oscillations in sensor data without knowing anything about the system
or the sensor, but using an actuator requires a lot of knowledge about both.
Different actuators affect different system properties (e.g., the half dozen knobs
on the front of a stereo receiver). They also have very different characteristics
(range, resolution, response time, etc.); consider the different dynamics of cook-
ing on campfires, gas/electric stoves, or blast furnaces. Identical actuators can
affect systems in radically different ways; a gear shift lever in a car, for instance,
invokes very different responses, if it is moved into “first” or “reverse.” When
the sensor and the system are linear, there are some useful standard procedures
for choosing test inputs, codifying the results, and reasoning about their impli-
cations — e.g., step and impulse response — but these kinds of drive signals
elicit tremendously complicated responses from nonlinear systems, making out-
put analysis very difficult. In nonlinear systems analysis, one typically applies
constant inputs, ignores any transients, and reasons about the resulting attrac-
tors in the state-space representation, as described in Sect. 3. Deciding how to
use an actuator is only the first part of the problem. Any planning about experi-
ments must also consider the set of possible states of the system — those that are
reachable from the existing state with the available control input. Finally, effec-
tive input-output modeling requires reasoning about useful experiments: those
that increase one’s knowledge about the target system in a productive way. The
ultimate goal of pret’s intelligent sensor/actuator control module is to find and
exploit the overlap between these sets of useful and possible experiments.

3 This property also allows pret to estimate an upper bound on the number of state
variables in a system.



To solve these difficult problems — controllability, reachability, and utility
— pret must reason about multiple sets of observations of a system, each made
under a different actuator condition. It must also plan those actuator conditions,
which involves modeling not only the actuator itself but also the behavior of the
actuator-system interface. Our current solution assumes that pret knows the
actuator input range — a reasonable assumption because the actuator normally
exists as an external device, unlike the internal workings of an unknown phys-
ical system. Using the QS/P paradigm developed earlier, coupled with the cell
dynamics technique and a simple binary search strategy, pret first performs a
qualitative bifurcation analysis. It begins at the lower end of the actuator range,
setting the drive signal to a constant value, letting the transient die out, and
then using cell dynamics to classify the behavior. It then increments the actuator
input and repeats the process. When the attractor bifurcates, pret zeroes in on
the bifurcation point by successively bisecting the actuator input interval. The
result of this procedure is a QS/P-space portrait of the system, complete with
regime boundaries and behavioral descriptions in each regime, such as:

“in the temperature range from 0 to 50◦C, the system undergoes a
damped oscillation to a fixed point at (x, y) = (1.4,−8); when T > 50◦C,
it follows a period-two limit cycle located at...”4

pret then invokes the model-building process in each regime, and finally at-
tempts to unify these models into a single ODE.

In the driven pendulum example, this procedure works as follows. Qualitative
bifurcation analysis identifies five separate qualitative state/parameter-space re-
gions, as shown in Fig. 4. pret then builds an ODE model for each regime using
procedures described in Sect. 2. These ODEs are shown in Table 1. Note that four
of these five ODEs are different, but all five are, in reality, instances of a single
ODE that accounts for the physical behavior across the whole parameter range.
pret’s goal is to find that globally valid model, so it must unify these ODEs.
Unification is reasonably straightforward if it is correctly interleaved with the
model-building process. In the driven pendulum, for example, pret analyzes the

Drive Frequency ODE Description

None θ̈(t) = − β
m θ̇(t)−

g
l sin θ(t) damped oscillator

Low θ̈(t) = − g
l

sin θ(t) nonlinear solution

Medium θ̈(t) + β
m θ̇(t) + g

l sin θ(t) = γ
ml sinαt “true” (full) solution

High θ̈(t) = − g
l

sin θ(t) nonlinear solution

Very High θ̈(t) = − gl θ(t) linear (small angle) solution

Table 1. Valid models of the driven pendulum in different behavioral regimes.

system in the small-angle regime,5 producing the model θ̈(t) = − gl θ(t). When
the actuator moves the system to the neighboring limit cycle regime, where

4
pret’s syntax is much more cryptic; it has no natural language capabilities.

5 where sin θ ≈ θ and the system acts like a simple harmonic oscillator



larger-angle behavior dominates, the small-angle solution no longer holds, forc-
ing a new model search, which yields the model θ̈(t) = − gl sin θ(t). pret then
tries to reconcile the two models, applying both of them in both regimes. Since
θ̈(t) = − gl θ(t) is a special case of θ̈(t) = − gl sin θ(t), the former holds in only one
of the two, whereas the latter holds in both, so pret discards the θ̈(t) = − gl θ(t)
model and goes on to the next regime, repeating the model building/unification
process. Once pret finds a single model that accounts for all observed behavior
in all regimes across the range of interest, its task is complete. Such a model may
not, of course, exist; a system may be governed by completely different physics
in different regimes, and no single ODE may be able to account for this kind
of behavior. In this case, the models in the different regimes would be mutually
exclusive, and pret would be unable to unify them into a single ODE, and so it
would simply return the list of regimes, models, and transitions. This is exactly
the form of a traditional hybrid model[6] of a multi-regime system.

As is true of automated modeling in general, evaluating the results of this
approach can be difficult because the question “How is this model better?” is
hard to formalize. From an engineering standpoint, a successful model is one that
matches observed behavior to within predefined specifications; pret is designed
to be an engineer’s tool, so its judgment of what constitutes success or failure
is exactly that. Parsimony is another desirable attribute in a model: one wishes
to account for the observed behavior using as few — and as simple — ODE
terms as possible. Finally, the speed with which pret produces such a model is
another important metric, particularly as we work with more-complex systems
and search spaces. Ultimately, the best form of evaluation will consist of whether
or not pret’s models are useful for control system design — that is, whether
the ODE that pret constructs of a radio-controlled car can actually be used as
the heart of a controller designed to direct that car to perform some prescribed
action. We are in the process of evaluating models of real-world systems in several
domains — ranging from robotics to hydrology — in this manner.

5 Relationship to Related Work

Most of the work in the AI/QR modeling community builds qualitative mod-
els by combining a set of descriptions of state into higher-level abstractions or
qualitative states[8, 11]. Many tools also reason about equations at varying lev-
els of abstraction, from qualitative differential equations (QDEs) in QSIM[16]
to ODEs in pret. pret’s approach differs from many of these tools in that it
works with noisy, incomplete sensor data from real-world systems, and attempts
not to “discover” the underlying physics, but rather to find the simplest ODE
that can account for the given observation. In the QR research that is most
closely related to pret, ODE models are built by evaluating time series using
qualitative reasoning techniques and then using a parameter estimator to match
the resulting model with a given observed system[7]. This modeling tool selects
models from a set of pre-enumerated solutions in a very specific domain (lin-
ear visco-elastics). pret is much more general; it works on linear and nonlinear



lumped-parameter continuous-time ODEs in a variety of domains and uses dy-
namic model generation to handle arbitrary devices and connection topologies.

pret shares goals and techniques with several other fields. It solves the same
problems as traditional system identification[15], but in an automated fashion,
and it relies upon many of the standard methods and ideas found in basic control
theory texts such as controllability and reachability[17]. Finally, pret includes
many of the same concepts that appear in the data analysis literature[10], but it
adds a layer of AI techniques, such as symbolic data representation and logical
inference, on top of these.

6 Conclusion

The goal of the work described in this paper is to automate the type of input-
output analysis that expert scientists and engineers apply to modeling problems,
and to use that technology to improve the pret modeling tool, which automat-
ically constructs ODE models of nonlinear dynamical systems. The challenges
involved are significant; the nonlinear control-theoretic issues involved in plan-
ning and executing experiments routinely stymie human experts. First, pret

must autonomously manipulate a control parameter in order to analyze the sys-
tem and find behaviorally distinct regimes. Then, it must use knowledge about
the behavior and the regime boundaries to reason about what experiments are
useful and possible. Finally, pret must use this information to perform the
experiments and analyze the results.

The qualitative state/parameter-space representation described in this paper
solves some of the problems that arise in phase-portrait analysis of complex sys-
tems by combining a state/parameter-space representation with the qualitative
abstraction of cell dynamics. This QS/P-space representation, wherein a system’s
dynamics are classified into discrete regions of qualitatively identical behavior,
supports a set of reasoning tactics, collectively termed qualitative bifurcation
analysis, which allows pret to reason about multiple sets of observations over a
given system.

pret’s sensor-related reasoning is essentially complete, but its reasoning
about the relationship between models and excitation sources — as well as final
design decisions about how to treat actuator knowledge in an explicit way — are
still under development. pret currently uses very little domain knowledge about
its target systems; instead, it relies upon general mathematics and physics —
principles that are broadly applicable and supported by a well-developed, highly
formalized body of mathematical knowledge that applies in any domain. The
point of this decision was to make pret easily extensible to other domains; be-
cause of this choice, refitting pret for some new domain is simply a matter of
a few lines of Scheme code. However, as we extend pret into more network-
oriented domains, such as electrical circuits, we are discovering that effective use
of domain theory may be critical to streamlining pret’s generate phase[9]. A
network-oriented modeling approach will also help pret reason about actuators
in a more-intelligent fashion, as the actuator itself, with its various, non-ideal
properties, may be represented directly as part of the network. For example, a



sinusoidal current source often has an associate impedance that creates a loading
effect on the rest of an electrical circuit. With a network approach, these effects
naturally become part of the model — just as they do in real systems.

Acknowledgments: Apollo Hogan, Joe Iwanski, Brian LaMacchia, and
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