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1 Introduction

In the past few years, the dance community
has begun to make extensive use of com-
puter animation software in representation
and rendering tasks. Computer hardware

has also seen increasing use, primarily as a
means to augment and/or amplify perfor-
mances in various interesting ways | e.g.,
a set of sensors on a performer's body, con-
nected through a data-processing channel to
a synthesizer or a lighting setup. In both of
these applications, however, the computer is
simply an external aid to human creativity;
it is not an active participant in the work.
We are interested in a wholly di�erent type
of computer tool, one that plays a truly ac-

tive role in both the creation and the analysis
of original dance sequences. In this paper,
we describe several implemented programs
that use cutting-edge computer-science tech-
niques to do exactly that.

Working from examples | a single ani-
mated movement sequence or a corpus con-
taining many such sequences | two of these

programs automatically generate innovative
and yet stylistically consonant sequences.
The �rst of these two, calledChaographer,
uses the mathematics of chaos to operate as
a \shu�er" of movement phraseology in a
manner akin to certain postmodern chore-
ographic strategies. The second program,
MotionMind, uses machine learning algo-
rithms to capture the stylistic rules implicit
in a given body of dance phrases. Mo-

tionMind then uses that knowledge to cre-
ate completely original movement sequences
that retain the stylistic stamp of the given
material. Both of these arti�cial intelligence
programs truly get the computer \inside"
the dance | unlike rendering with anima-
tion software like Life Forms, which does
not \teach" a computer to dance any more
than entering a text �le in a word proces-
sor \teaches" that computer how to under-
stand the corresponding paragraph of War

and Peace.

Finally, computers can also play a more-
active role in the analysis of the spatial as-
pects of movement. We briey describe a
class of computer programs called Video-

Based Labs (VBLs) which can e�ectively
augment established methods of movement
and style analysis. VBLs have a number of
potential pedagogical applications in the ar-
eas of choreography, technique, and kinesiol-
ogy, and we are beginning to explore some of
these applications.

Website

In order to demonstrate the capabilities of
these programs, we have set up a comprehen-
sive website1, listed at the beginning of this
paper, which includes universal access to:

� the Chaographer code for generating
chaotic variations

1Full functionality requires Netscape Navigator
4.05 or higher.
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� a simple movement animation package
akin to Life Forms but written in Java,
and

� an interactive library of movement an-
imation sequences, including a variety
of examples of Chaographer andMo-

tionMind results.

We hope that this interactive repository of
computer tools and movement sequences will
become a major resource for future exper-
iments with both analytical and creative
projects in the dance community.

2 Using Chaos to Create

Choreographic Variations

Arti�cial intelligence[12] (AI) is the branch
of computer science that strives to automate
perception, reasoning, and action. It is, of
course, impossible to automate the creative
process, but AI can provide some provocative
suggestions. As an instance, we describe the
Chaographer program[3, 4], which uses
the mathematics of chaos to generate inno-
vative variations on a pre-de�ned movement
sequence.

Though its name suggests randomness,
chaos is actually quite orderly. Chaotic sys-
tems have a �xed, fundamental structure;
at the same time, they are exquisitely sen-
sitive and react strongly to stimuli | all
the time remaining within the limits of their
�xed structure. Consider an eddy in a
stream. Its roils and ripples are highly com-
plex, but its general shape, size, position, etc.
are constant. Two wood chips dropped a
short distance apart will take vastly di�erent
paths through the eddy, but both will cover
the same complicated patch of currents and
cross-currents.

Chaographer maps a pre-de�ned dance
onto this sensitive structure and then gen-

erates new dances by dropping new wood
chips and following their paths. Imagine a
camera suspended above the eddy, shooting
ten frames a second. This sequence of pho-
tographs is a map of the original path of the
chip. Chaographer links this chaotic map
to a prede�ned movement sequence as fol-
lows. It �rst uses computational geometry[6]
techniques to identify and de�ne the region
around the wood chip in each frame. It then
labels the �rst of these regions with the �rst
dance posture, the second region with the
second posture, and so on. Imagine, now, a
computer running Life Forms, hooked up to
the camera suspended above the eddy, and
programmed to recognize what region the
wood chip is in2 and display the correspond-
ing body posture. If one dropped a second
wood chip into the eddy at exactly the same
starting position as the original one, it would
follow the same path, and so the playback de-
vice would re-create the original sequence. If
the second chip is dropped into a di�erent
part of the eddy, however, it will | as de-
scribed at the end of the previous paragraph
| follow a di�erent path, but through the

same currents. In this case, the playback de-
vice will generate a new sequence that resem-
bles the original in a manner similar to the
classic sense of a variation on a theme.

The eddy/wood chip metaphor used in the
previous paragraphs is useful and qualita-
tively correct, but it is obviously informal
and inexact; the Chaographer implemen-
tation, for example, uses computer simula-
tions of di�erential equations, not water and
wood. The mathematics is covered in detail
in [3, 4].

Though the mechanism involved is very
di�erent, Chaographer's results are rem-
iniscent of some of Cunningham's aleatory
processes: the computer program automati-

2Implementing this would be diÆcult, requiring
computer vision[1] techniques.
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cally divides the dance into di�erent-length
chunks and then shu�es them, producing
a variation that bears striking resemblance
to the original, but is also clearly di�er-
ent. These results are impossible to appre-
ciate from a written description; please see
the movies on the website. Our evaluations
of these results are based on detailed ex-
amination by half a dozen domain experts:
movement analysts (for the ballets) and mar-
tial artists (for the kenpo karate sequences).
These experts aÆrm that Chaographer's
results �t the genre: i.e., its ballets look bal-
letic and its kenpo karate sequences look like
kenpo | and not like shokotan karate or tae
kwon do3. We are currently in the process
of doing a larger and more scienti�c study of
these results.

As mentioned in the previous section of
this paper, both Chaographer and a rudi-
mentary human-�gure animation package
are available on our website, along with in-
structions on how visitors to that site can use
this software to:

� play and/or download existing anima-
tions from our library

� generate new animations, and upload
them to the library if desired

� use Chaographer to generate chaotic
variations on any of these movement
sequences, then view and/or download
them

Mathematically sophisticated users can also
change the defaults and invoke Chaogra-

pher with di�erent chaotic systems, param-
eter values, and/or initial conditions.

Readers who are interested in delving
deeper into the �eld of chaos should consult

3These genres use many of the same postures as
kenpo, but in very di�erent sequences.

any of the dozens of good nonlinear dynam-
ics books that are currently in print. An
entertaining popular overview may be found
in [9], a Scienti�c American-level review ap-
pears in [2], and those with more mathemat-
ical background may �nd [10] interesting.

3 Learning the Grammar of

Dance

One problem with any choreographic tech-
nique, automated or not, that involves sub-
sequence reordering is that the transitions at
the subsequence boundaries can be quite jar-
ring. Figure 1, for example, shows a short
section of a chaotically generated variation
on a ballet adagio. Note the abrupt transi-
tion between the �fth and sixth moves of the
variation. In order to \smooth" these abrupt
transitions, we developed a program called
MotionMind, which uses machine learning

techniques to generate stylistically consonant
\tweening" sequences.

Machine learning[5] researchers are inter-
ested in constructing computer programs
that automatically improve with experience,
such as

� robots that learn their way through
mazes

� autonomous vehicles that learn to drive
on highways, or

� computer programs that ingest a few
hundred issues of the Wall Street Jour-
nal and learn the rules of English gram-
mar

The MotionMind program[11] is a ma-
chine learning tool for dance. Its input is a
corpus of movement sequences (e.g., a group
of ten Balanchine ballets, animated in Life
Forms or some equivalent). Using statistics
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Figure 1: Part of a ballet adagio (top) and a short section of a chaotic variation on that
sequence (bottom) that was generated by the Chaographer program. Note the abrupt
transition between the �fth and sixth frames of the variation. MotionMind can be used
to smooth such transitions in a kinesiologically and stylistically consistent fashion.

and graph theory, MotionMind learns the
\grammar" of that movement genre | that
is, what kinds of body postures tend to follow
one another, and in what order.

Once the stylistic rules that are implicit
in a given body of dance phrases have been
captured, there are a variety of interesting
ways in which one can exploit that knowl-
edge. Among other things, one can pre-
scribe a starting posture and an ending pos-
ture and useMotionMind's knowledge base
to construct a \natural" | and original |
sequence that a practitioner of that genre
would follow to move between those two po-
sitions.

MotionMind's learning process involves
examining the corpus, one joint at a time,
and storing the typical patterns in which that
joint moves. Our internal representation of
the human body, like Life Forms's, is based
on quaternions; we use four numbers to de-
scribe the position of each of the 44 main
joints. To capture the movement patterns of
the right knee, for instance, MotionMind

looks through all the movement sequences in
the corpus and extracts the right-knee po-

sition from each posture in each sequence. It
then notes what right-knee positions pre-
cede and follow each right-knee position; if
the knee is bent at a 30 degree angle, for ex-
ample, the preceding position is likely to be
either 29 degrees or 31 degrees. The stylis-
tic genre of the corpus is reected by the
probabilities of transitions between succes-
sive positions. A high jumper, for instance,
will unbend his or her knee much faster
that s/he bends it, so the typical progres-
sion of that joint angle will be something like
f33 7! 32 7! 31 7! 30 7! 29 7! 28 7! 32 7!
40 7! 50 7! 70:::g, and the corpus will con-
tain many 31 7! 30 transitions and very few
30 7! 31 transitions. MotionMind keeps
track of these statistics, and stores all of this
information in a collection of 44 joint transi-
tion graphs, each of which describes the typi-
cal movement patterns of one joint. Figure 2
shows a joint transition graph for the hips
that was constructed in this fashion from a
corpus of 38 ballet sequences totaling 976 po-
sitions. This data structure that is known in
formal terms as a weighted directed graph or
a hidden Markov model; please see [11] for
the technical details.
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Figure 2: A mathematical scheme for the representation of movement: a joint transition

graph that represents the movement patterns of the hips in a small corpus of 38 short ballet
sequences. Each circle is a hip position, and each arrow represents a transition between the
two corresponding positions.
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Once MotionMind has distilled the
movement patterns in a corpus into 44 joint
transition graphs, it can use that information
to generate original dance sequences that �t
the genre of that corpus. We have explored
this idea extensively, using a corpus of 38
short ballets comprising 976 distinct body
postures. Once MotionMind had learned
the patterns in this corpus, we presented it
with a variety of \tweening" tasks, giving it
arbitrary starting and ending postures and
requesting that it search through the graphs
that it had constructed and create a sequence
joining those two postures. Because Mo-

tionMind's graphs reect the structure of
the corpus, that newly generated movement
sequence retains the stylistic stamp of the
original material.

Figure 3 shows an example of such a se-
quence. The starting and ending body pos-
tures (top left and top right in �gure 3, la-
beled 1 and 10 , respectively) are quite dif-
ferent; note the facing of the dancer and the
weight distribution on the feet, for example.
The eight-move sequence computed by Mo-

tionMind moves between those positions in
a very natural way. The program's �rst
move, for instance, is to lower the left leg,
a natural strategy if one is going to change
one's facing and end up on two feet. The fol-
lowing move is a simple weight shift (frames
4 and 5 ), in preparation for a lift of the
right leg. This lift, which is not strictly nec-
essary to move from the �fth frame to the
tenth, is an innovation that MotionMind

created based on the patterns that it ob-
served in the corpus; it reects the fact that
ballet dancers rarely spin with both feet at
on the ground. Perhaps the most interesting
thing about this interpolation sequence, from
a balletic standpoint, is the relev�e that Mo-

tionMind used during the direction shift be-
tween frames 6 and 10 . Many relev�es ap-
pear in the corpus, but none of them is asso-

ciated with upper body positions that resem-
ble the one that appears in this sequence. In
using a relev�e in a di�erent (and appropriate)
context, MotionMind invented a physically
and stylistically appropriate way to move the
dancer between the speci�ed positions. The
sequence in �gure 3 includes a variety of
other stylistically consonant innovations as
well; consider, for example, the uplifted chest
and chin in frames 7 and 9 . Recall that
these postures were not simply pasted in ver-
batim from the corpus; most of them never
appear in the corpus at all. Rather, Mo-

tionMind synthesizes them joint by joint,
using the machine learning algorithms de-
scribed above, and their �t to the genre is
strong evidence of the success of these meth-
ods.

Again, these results are impossible to ap-
preciate from a static description; please see
our website for a variety of movies of Mo-

tionMind's sequences.

The whole point of the machine learning
procedure is to capture the patterns in a
corpus, so the composition of that corpus
obviously a�ects its results. If Motion-

Mind is given two dozen balletic works and
one short gymnastics routine, for instance,
the sequences that it constructs by learn-
ing and using the grammar of that corpus
will occasionally startle the observer. Corpus
size is also an issue; 976 postures is an ex-
tremely meager sample of human body mo-
tion, and the knowledge that MotionMind

captures from such a corpus is necessarily
idiosyncratic. This causes the program to
make some mathematically and/or aestheti-
cally interesting \mistakes." If a particular
elbow angle only appears once, for instance,
as part of a single arm sequence that is very
di�erent from anything else in the corpus,
then MotionMind is forced to use that en-
tire sequence in order to make use of that
elbow angle. The problem is that the graph
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Figure 3: A \tweening" sequence computed by the MotionMind program. Inputs are the
starting and ending positions shown at the top left and top right, respectively; the eight
frames below them were computed automatically by the program.

is very loosely connected, the solution is to
increase the richness of the corpus, and this
was a large part of the motivation for our
development e�ort on the website. We en-
courage all interested readers to visit the site;
any and all animations that anyone is will-
ing to contribute (by uploading them to our
library) would be a real aid to this project.

4 Mathematical Movement

Analysis

Dance is, in essence, motion and, there-
fore, transitory. While videotape has en-
hanced the analytical possibilities available
to dancers, there is still much that goes by
too quickly. It would be useful, at times, to
\stop the world" and examine more subtle
components of motion, including positions,
angles, and speeds. A similar need arises in
mathematics and physics teaching in middle
and high school, where analyzing motion is a
way for students to understand the relation-
ships among position, velocity, acceleration,
and to approach the fundamental concepts of
calculus. Video-based lab research[7] seeks
to support these students' understanding of
the relationship between visible motion and

the graphs that represent its mathematical
essence. We would like to suggest that this
kind of software might also be very useful in
dance analysis.

The user of a video-based lab is involved
in the process of analyzing motion from the
very beginning; the computer is a tool, but
not a dance expert, so the choice of focus
is the user's, not the computer's. In order
to develop a connection between motion and
mathematical representation, a user starts
with digitized video of some interesting mo-
tion | say, a cartwheel | and chooses a
point to follow | say, the left hand. By in-
dicating the location of the point of interest
(with a mouse click) in each video frame (i.e.,
potentially 30 times/second), the user con-
structs a graph that represents the changing
position of the hand. With this information,
it is simple for the user to see when the hand
is furthest from the body, when it is at a
particular angle from vertical, or when it is
directly across from the other hand. It is
also possible for the software to calculate the
speed at which the hand is moving and to
present a graph of this information.

Much of the power of video-based labs
comes from the unique way they connect the
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video with the graphs. The user can manip-
ulate the video (run it forward or backward,
stop at a particular frame, etc.) and the cor-
responding points on the graph will be high-
lighted. Even more interesting is a feature
that allows the student to point to a partic-
ular place on the graph | perhaps the one
that shows the hand moving very quickly |
and see the part of the video where the cor-
responding action takes place. It is also pos-
sible to compare two videos where the same
motion is ostensibly taking place and use the
graph/video combination to pinpoint and an-
alyze similarities and di�erences between the
two performances.

CamMotion[8] is one such VBL, developed
for high-school students, with as yet unreal-
ized potential for the analysis of dance move-
ment. Some of the uses we anticipate for this
tool are listed below.

� In dance training:

{ as a comparative assessment tool
for speci�c movement patterns

{ for demonstration of the role of po-
sitional exactitude and its relation-
ship to kinetics

� In stylistic analysis:

{ for objective measurement of both
position and action characteristics
and proportions

� In rehearsal:

{ for clari�cation of movement
speci�cs

� In creative applications:

{ for generation of �lm/video arti-
facts to accompany live movement

We are currently exploring some of these
ideas and will report on the results in a fu-
ture paper.

5 Conclusion

The goal of this paper is to convince dancers
that they should be deeply interested in com-
puters | and not just as recording, visual-
ization, or special-e�ects aids. Computers
can be active collaborators in the genera-
tion of stylistic dance phrases as well as in
the mathematical description of deep char-
acteristics of movement patterns. The po-
tential synergy between sophisticated com-
puter techniques and modern approaches to
dance goes far beyond these uses | and most
likely further than we can currently imagine.
The projects that we describe here provide
some idea of the forms those mutually ben-
e�cial interactions might take. In particu-
lar, we have described how research results
from several cutting-edge areas of computer
science | machine learning, arti�cial intelli-
gence, chaos theory, and digital video anal-
ysis | can make useful and interesting con-
tributions to the learning, inspiration, and
analysis of dance.

Acknowledgements: Josh Stuart de-
signed and implemented the Chaographer
and MotionMind programs.
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