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Abstract

A recurrence plot is a visualization tool for analyzing experimental data. These

plots often reveal correlations in the data that are not easily detected in the original

time series. Existing recurrence plot analysis techniques, which are primarily

application-oriented and completely quantitative, require that the time-series data

�rst be embedded in a high-dimensional space, where the embedding dimension dE
is dictated by the dimension d of the data set, with dE � 2d+ 1. One such set of

recurrence plot analysis tools, Recurrence Quanti�cation Analysis, is particularly

useful in �nding locations in the data where the underlying dynamics change.

We have found that the same results can be obtained with no embedding. The

work presented in this paper represents the beginning of an attempt to improve

upon recurrence plot analysis in a way that incorporates and exploits their rich

structural characteristics.
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Lead Paragraph In general, time-series analysis methods begin with | or at least
include | delay-coordinate embedding, a well-established means of reconstructing the
hidden dynamics of the system that generated the time series. If the embedding is done
correctly, the theorems involved guarantee that certain properties of the original system,
known as dynamical invariants, are preserved in the embedded, or reconstruction space.
This is an extremely powerful correspondence, implying that many conclusions drawn
from the reconstruction-space dynamics are also true of the real, underlying dynamics.
There are, of course, some important caveats; one of the most limiting is that correct
embeddings are not easy to construct. Methods in the time-series analysis literature
use a variety of heuristics to solve the (signi�cant) problems that are inherent in this
process, and the resulting algorithms are often computationally expensive. Time-series
analysis methods that do not require embedding are, therefore, extremely desirable. We
present evidence suggesting that recurrence plots are such a method. Our conclusion
is twofold. First, when using current methods of recurrence plot analysis one need not
embed the data. Second, we note that better methods of recurrence plot analysis are
needed, methods that take into account the structural and qualitative aspects of these
fascinating plots. This work represents a �rst step towards this goal.
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1 Introduction

First introduced in a 1987 paper by Eckmann, Kamphorst, and Ruelle[3], the recur-
rence plot (rp) is an analysis tool for experimental time-series data. An rp is a two-
dimensional representation of a single trajectory. The time series spans both ordinate
and abscissa and each point (i; j) on the plane is shaded according to the distance be-
tween the two corresponding trajectory points yi and yj. In an unthresholded rp (utrp)
the pixel lying at (i; j) is color-coded according to the distance, while in a thresholded
rp (trp) the pixel lying at (i; j) is black if the distance falls within a speci�ed threshold
corridor and white otherwise. For instance, if the 117th point on the trajectory is 14
distance units away from the 9435th point, the pixel lying at (117, 9435) on the rp1 will
be shaded with the color that corresponds to a spacing of 14. Figure 1 shows utrps
generated from two very di�erent data sets: a time series derived by sampling the func-
tion sin t and a time series from the well-known Lorenz system. The colors on these
plots range from dark blue for very small spacings to red for large inter-point distances,
as shown on the calibration bars in the �gure. With this in mind, the sine-wave rps
are relatively easy to understand; each of the \blocks" of color simply represents half a
period of the signal2. The lower rps in the �gure, generated from a chaotic data set,
are far more complicated, although they too have block-like structures resembling what
might be expected from a periodic signal. This signal, though, is not periodic, so the
repeated structural elements in the plot beg an explanation.

Recurrence plots are intricate and visually appealing. They are also useful for �nd-
ing hidden correlations in highly complicated data. Moreover, because they make no
demands on the stationarity of a data set, rps are particularly useful in the analysis of
systems whose dynamics may be changing. Although the literature in this area is not
extensive, the use of recurrence plots in time-series analysis has become more common in
recent years, particularly in the area of physiology. Webber and Zbilut[14], for instance,
used recurrence plot analysis to discern between \quiet" and \active" breathing in labo-
ratory rats, and Kaluzny and Tarnecki[4] used rps to study neuronal spike trains in cats.
rps have been used in mathematical problems primarily to identify transition points in
non-stationary data sets. Trulla, Giuliani, Zbilut, and Webber[13], for instance, ana-
lyzed the dynamics of the logistic equation, varying the driving parameter smoothly and
leading the time series between chaotic and periodic regimes. They concluded that rp
analysis compares favorably to classical statistical approaches as a means for analyzing
chaotic data, particularly in its ability to detect bifurcations. Very recently, Casdagli[2]
used rps to characterize time series generated by dynamical systems driven by slowly
varying external forces.

Our study of recurrence plots has been motivated by the desire to give meaning to
the fascinating structures that they exhibit. Previous work in this area is primarily

1Point (9435,117) will be shaded similarly. As originally conceived, however, rps are not necessarily
symmetric[3].

2Recall that the shading of the point (w; v) on this plot reects the distance between sinw and sin v;
if w � v = �=2, for example, that distance is large.
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Figure 1: Recurrence plots: (a) a sine-wave signal and the corresponding recurrence plots
(b) a more-complicated signal from the Lorenz system and the corresponding recurrence
plots. The colorful plots to the left, known as unthresholded recurrence plots (utrps),
show the distance relationships between all points in the signal via a color map. The
black and white plots to the right are called thresholded recurrence plots (trps) because
they highlight only those points that fall within a prescribed distance range. In (a), for
example, this range of distances, called a threshold corridor, is [0, 0.25]; in (b) the
threshold corridor is [0, 5.0]. One can see the trp patterns in the utrps by careful
examination of the utrp colorbars for the given threshold corridor values.
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application-oriented and completely quantitative. We wish, rather, to extend, formalize,
and systematize recurrence plot analysis in a meaningful way that is based both in
theory and experiment and that targets both quantitative and qualitative properties.
An important consequence of such a formalization is the power that it would lend to the
rp as an analysis tool. For example, knowledge of how periodicity and chaos manifest
on rps and how bifurcations a�ect the geometry and topology of their structure would
allow us to use these plots as a means of determining when a system has, for example,
moved from a limit cycle to a chaotic regime. The work described in this paper is a �rst
step towards this type of formalization.

While examining several rps of a particular data set, we noticed that their appear-
ances seemed to remain qualitatively unchanged with changing embedding dimension.
Figure 2 illustrates this for data from an angle sensor on a parametrically driven pen-
dulum. When rps of other, unrelated data sets also exhibited this type of surprising
behavior, the question naturally arose as to whether the quantitative aspects of recur-
rence plots were independent of the embedding dimension as well. In this paper, we
present a suite of numerical calculations on simulated and experimental data sets that
explore this question. Speci�cally, we demonstrate that the Recurrence Quanti�cation
Analysis (RQA) of [13] appears not to depend on the embedding dimension. Analytic
justi�cation of this result is a current focus of our e�ort and the topic of a forthcoming
paper.

This result suggests that recurrence plots are more powerful than was previously
believed. In all four of the studies mentioned in the related work paragraph above, for
example, the data were �rst embedded inRdE for some dE > 1, using the familiar method
of delay coordinates[8]. Contrary to current time-series analysis arcana, however, our
evidence suggests that dE need only be equal to one if the data are to be analyzed with
RQA. This means that no embedding need be done.

2 RPs and Recurrence Quanti�cation Analysis

In this section, we briey outline some of the basic features of rps and describe how one
generates an rp of an experimental data set. The standard �rst step in this procedure
is to reconstruct the dynamics by embedding the one-dimensional time series in dE-
dimensional reconstruction space using the method of delay coordinates. Given a system
whose topological dimension is d, the sampling of a single state variable is equivalent
to projecting the d-dimensional phase-space dynamics down onto one axis. Loosely
speaking, embedding is akin to \unfolding" those dynamics, albeit on di�erent axes. The
Takens theorem guarantees that the reconstructed dynamics, if properly embedded, are
equivalent to the dynamics of the true, underlying system in the sense that dynamical
invariants such as generalized dimensions and the Lyapunov spectrum, for example, are
identical[7, 12]. The process of constructing a correct embedding is the subject of a
large body of literature and numerous heuristic algorithms and arguments; Abarbanel's
recent text[1] gives a good summary of this extremely active �eld. The basic problem is
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Figure 2: These four thresholded recurrence plots were generated from a data set gath-
ered from an angle sensor on a parametrically driven pendulum. trps (a){(d) represent
embedding dimensions 1{4, respectively, and all four plots have identical threshold cor-
ridors and time delay values. Note the striking structural similarity: the only apparent
variation is a lightening of the trp with increasing embedding dimension.
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to choose two parameters | the delay and the reconstruction-space dimension | that
guarantee an embedding3 of the data. This process is di�cult because in general one
does not have prior knowledge of d's correct value; all one has is a one-dimensional time
series and from this one would like to learn as much as possible about the system that
generated the signal. Given a trajectory in the embedded space, �nally, one constructs an
rp by computing the distance between every pair of points (yi; yj) using an appropriate
norm and then shading each pixel (i; j) according to that distance.

2.1 Delay Coordinate Embedding

To reconstruct the dynamics, we begin with experimental data consisting of a time
series:

fx1; x2; :::; xNg

Delay-coordinate reconstruction of the unobserved and possibly multi-dimensional phase-
space dynamics from this single observable x is governed by two parameters, embedding
dimension dE and time delay � . The resultant trajectory in RdE is:

fy1; y2; :::; ymg

where m = N � (dE � 1)� and

yk = (xk; xk+� ; xk+2� ; :::; xk+(dE�1)� )

for k = 1; 2; :::; m. Note that using dE = 1 merely returns the original time series; one-
dimensional embedding is equivalent to not embedding at all. Proper choice of dE and �
is critical to this type of phase-space reconstruction and must therefore be done wisely;
only \correct" values of these two parameters yield embeddings that are guaranteed
| by the Takens Theorem[12] and subsequent work by Packard, Crutch�eld, Farmer
and Shaw[7] and Sauer, Yorke and Casdagli[8] | to be topologically equivalent to the
original (unobserved) phase-space dynamics.

Assuming that the delay-coordinate embedding has been correctly carried out, it is
natural to assume that the rp of a reconstructed trajectory bears great similarity to an
rp of the true dynamics. Furthermore, we expect any properties of the reconstructed
trajectory inferred from this rp to be true of the underlying system as well. This
is, in fact, the rationale behind the standard procedure of embedding the data before
constructing a recurrence plot.

2.2 Constructing the Recurrence Plot

Recurrence plots are based upon the mutual distances between points on a trajectory,
so the �rst step in their construction is to choose a norm D. For the work presented

3Used precisely, the term embedding refers to a one-to-one map that also preserves tangent directions.
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here, we use the maximum norm, although in one dimension the maximum norm is,
of course, equivalent to the Euclidean p-norm. We chose the maximum norm for two
reasons: for ease of implementation and because the maximum distance arising in the
recurrence calculations (the di�erence between the largest and smallest measurements
in the time series) is independent of embedding dimension dE for this particular norm.
This means that we can make direct comparisons between rps generated using di�erent
values of dE without �rst having to re-scale the plots. Using the Euclidean 2-norm, on
the other hand, inter-point distances increase with embedding dimension simply because
length along a new dimension can only contribute to the total distance. It is trivial to
show that distance D(yi; yj), as measured by Euclidean p-norm or the maximum norm,
is non-decreasing with respect to dE. The point of using the maximum norm was to
mitigate this e�ect.

Next, we de�ne the recurrence matrix A as follows:

A(i; j) = D(yi; yj); 1 � i; j � m

D(yi; yj) = max
1�k�dE

jxi+(k�1)� � xj+(k�1)� j

We then generate an unthresholded recurrence plot (utrp) of the time series by plotting
matrix A as a contour plot (see �gure 1). Since current recurrence-plot analysis methods,
including Trulla et al.'s RQA, focus on thresholded recurrence plots (trps), the next
step is to use the utrp to choose a threshold corridor, [�l; �h]. This is done by �rst
visually examining the utrp in order to �nd interesting structures, and then using the
corresponding values from the utrp colorbar as values for �l and �h, thus isolating
these structures. Interesting structures are those whose appearance is best described
as being somewhat continuous { resembling an underlying skeleton for the rest of the
utrp { and that persist for several di�erent threshold corridors. For data from the
Lorenz and R�ossler systems, this procedure is relatively easy, but for other systems in
which such structural organization may not be present we are relegated to the somewhat
ad hoc process of choosing a threshold corridor that represents some percentage of the
total range of recurrence distances present in the utrp. The latter method is what is
generally used in the literature. Once the threshold corridor has been chosen, it is used
in order to generate a thresholded recurrence matrix B:

B(i; j) =

(
1 if �l � D(yi; yj) � �h
0 otherwise

Finally, the trp is generated by darkening all pixels (i; j) that correspond to nonzero
entries in matrix B.

The choice of threshold corridor [�l; �h] is critical; too large a corridor results in
saturation of the entire trp | where every pixel is black | while a corridor that is too
narrow will not be adequately populated with points to support the analyses that follow.
Besides being critically important, the selection of threshold corridor is also di�cult to
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systematize in any sensible way. Solutions in the literature are unsatisfying; Webber and
Zbilut, without comment, prescribe a threshold corridor corresponding to the lower ten
percent of the entire distance range present in the corresponding utrp. Our procedure,
which uses corridor boundary values that isolate \interesting" structures in the utrp,
is also somewhat unsatisfying, and we are working on developing a better formalization.
In the meantime, it is an adequate preliminary approach; for instance, it allowed us to
reproduce the results in [13], even though that paper did not specify a threshold corridor.
Moreover, our procedure allows us to isolate and examine interesting structures across

the range of recurrence distances | unlike most existing trp approaches, which specify
threshold corridors of the form [0; r]. This is an important advantage, as it allows us
to examine recurrence structures comprised of points that are not false near neighbors
(FNNs) in reconstruction space4.

2.3 Recurrence Quanti�cation Analysis

Perhaps the key mathematical issue in any attempt to use rps to analyze experimental
data is that of quantifying the structure that appears in the plots. Trulla, Guiliani,
Zbilut, and Webber[13] have devised a set of quantifying analyses, collectively called
Recurrence Quanti�cation Analysis (RQA), to address this problem. The remainder
of this section covers the RQA procedure in detail. We view these techniques as the
best-formulated and most-general approach to rp analysis that has been developed to
date. However, its lumped statistical nature means that RQA cannot capture many of
the spatiotemporal details of the dynamics. Moreover, it appears that the standard �rst
step in this procedure | that of embedding the data | may be unnecessary.

In order to perform RQA on a data set, we �rst construct a trp, choosing a threshold
corridor [�l; �h] as described in the previous section, and then use that trp to compute
�ve statistical values. The �rst of these statistics, termed % recurrence (rec), is simply
the percentage of points on the trp that are darkened (i.e., those pairs of points whose
spacing falls within the corridor). This percentage is precisely what is used to compute
the correlation dimension of a data set | Kaplan and Glass[5], for instance, de�ne
correlation dimension as the slope of the linear region in the S-shaped % recurrence vs.
corridor width plot. RQA, however, stops short of extending the analysis beyond the
simple calculation of the percentage of dark points on the plot. The second RQA statistic
is called % determinism (det); it measures the percentage of recurrent points in a trp
that are contained in lines parallel to the main diagonal. The main diagonal itself is
excluded from these calculations because points there are trivially recurrent. Diagonal
lines are included in the analysis if and only if they meet or exceed some prescribed
minimum length threshold. Intuitively, det measures how \organized" a trp is. The
third RQA statistic, called entropy, is closely related to % determinism. Entropy (ent)
is calculated by binning the diagonal lines de�ned in the previous paragraph according
to their lengths and using the following formula:

4The process of unfolding the attractor | increasing dE | e�ectively eliminates FNNs, points that
are neighbors in low-dimensional space due only to projection and not to the underlying dynamics[6].
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Figure 3: (a) a simple sine-wave signal is combined with an upward linear signal (dashed
line) to yield an upward-trending sine wave. (b) The corresponding utrp \pales" away
from the main diagonal; the color shifts from blue to red as distances increase. (c) The
trp for a threshold corridor of [0, 0.25]. Note that recurrences are less frequent away
from the main diagonal. This generally means that points are recurrent only if they are
close in time.

ENT = �
NX
k=1

Pk logPk

where N is the number of bins and Pk is the percentage of all lines that fall into bin k.
According to Shannon's information theory[9], predictability decreases with increasing
entropy, so one would expect low values of ent for trps of chaotic data sets, for example.
The fourth RQA statistic, termed trend, measures how quickly a trp \pales" away
from the main diagonal. As the name suggests, trend is intended to detect non-
stationarity in the data. Figure 3 shows a time series of a sine-wave signal with an
upward linear trend, together with rps | thresholded and unthresholded | of that
signal. Although both plots retain the periodic block structure induced by the periodicity
of the signal, the shading of the utrp \fades" away from the diagonal because the linear
trend adds to the inter-point distances in spite of the periodicity. The �fth and �nal RQA
statistic is 1=linemax, where linemax is the longest line found during the computation of
det. Eckmann et al. claim that line lengths on rps are directly related to the inverse of
the largest positive Lyapunov exponent[3]. Short linemax values are therefore indicative
of chaotic behavior. In a purely periodic signal | the opposite extreme | lines tend to
be very long, so 1=linemax is very small.
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Figure 4: RQA results on structurally dissimilar trps can be almost identical. These
two very di�erent trps, one (a) from the R�ossler system and one (b) a sine-wave signal
of varying period, have equal or near-equal values of rec (2.1%) and det (42.9% for the
R�ossler data and 45.8% for the varying-period sine wave). Both trps were generated
from 5000-measurement time series using an embedding dimension of 1 and a minimum
line length of 5.

While the ultimate goal of our work is to improve upon existing methods of rp
analysis, we recognize that RQA is probably the best current set of rp analysis tools.
However, the lumped statistics of RQA do not measure much of the qualitative structure
of recurrence plots; in �gure 4, for example, we show two structurally dissimilar rps that
are almost identical from the standpoint of RQA. It is our goal to devise rp analysis
methods in which these types of structural, qualitative di�erences are clearly evident
and easy to analyze. The ultimate intent of this line of research is to re�ne rp analysis
techniques to the point where they can be used to gain greater insight into the underlying
signals from which the rps were generated.

3 Experiments and Results

One of the more intriguing | and puzzling | characteristics of recurrence plots is the
structural stability that they exhibit with increasing embedding dimension. That is,
qualitative features that are visible in rps generated using dE = 1 often persist in rps
that are based on higher embedding dimensions | even in complex, high-dimensional
data sets. This may appear counterintuitive, as the delay-coordinate embedding process
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is designed to \unfold" the underlying dynamics from the one-dimensional time series.
Following this line of reasoning, it might be natural to expect that the rp structure of
a formally correct reconstruction (dE � 2d+ 1) would be di�erent from rps of partially
unfolded dynamics (dE = 1; 2; : : : 2d): that the rp structure would change with embed-
ding dimension until the \correct" dE was reached. However, this is not generally the
case, as is clearly visible in �gure 2.

The remainder of this section explores this issue in the context of both quantitative
and qualitative measures of rp structure. Speci�cally, we demonstrate that rp structure
remains qualitatively unchanged with dE for two simulated systems (Lorenz and R�ossler),
one experimental system (the driven pendulum), and a simple sine-wave time series. We
then investigate how changes in embedding dimension a�ect the quantitative rp features,
as captured by three of the �ve RQA statistics. Finally, we duplicate the analysis of [13]
| wherein RQA was used to detect dynamical variations in a nonstationary time series
derived from the logistic map | and we extend that analysis to the Lorenz system. The
results of these analyses were uniformly independent of embedding dimension.

3.1 Qualitative Appearance of trps for Various Systems

To demonstrate their structural stability with increasing embedding dimension, we
present trps of four di�erent time series. The �rst consists of the x-component of a
fourth-order Runge-Kutta integration of the familiar Lorenz system:

2
64

_x
_y
_z

3
75 =

2
64
�(y � x)
rx� y � xz
xy � bz

3
75 (1)

with � = 16; b = 4, r = 45:92 | values that yield the classic two-lobed chaotic Lorenz
attractor | and an integrator timestep of 0:01. The second time series was derived from
a similar integration and sampling of the R�ossler system:

2
64

_x
_y
_z

3
75 =

2
64
�(y + z)
x + cy
a + xz � bz

3
75 (2)

with a = 0:2; b = 10:0, c = 0:15 and a timestep of 0:01. The third data set was gathered
experimentally from an angle sensor on a parametrically driven pendulum, and the
fourth signal was a uniform sampling of a simple, noise-free sine wave covering several
periods. The �rst three data sets were chosen because they exhibit chaotic dynamics of
known dimension; the sine-wave signal was chosen because it makes the basic elements
of rp structure easy to see and understand. Each of these signals covered a di�erent
range of values and thus required a di�erent threshold corridor5.

5For each time series, the same threshold corridor value was used for each of the four embedding
dimensions.
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Figure 5: These four trps were generated from data from a numerical integration of
the Lorenz system. trps (a){(d) represent embedding dimensions 1{4, respectively;
identical threshold corridors and time delay values were used for all four plots. Note
the striking structural similarity: the only apparent variation is a lightening of the trp
with increasing embedding dimension.

Figure 2 on page 6 shows recurrence plots generated from the chaotic pendulum data
set with four di�erent embedding dimensions. Note that the qualitative features of the
four trps are essentially the same. The major di�erence is in the gradual fading of the
trps as dE increases. This is largely due to the fact that an identical threshold corridor
was used to generate each plot. As noted in section 2.2, the distance between any two
points on a delay-coordinate reconstructed trajectory is non-decreasing with increasing
dE. The threshold corridors in the trps in �gure 2 are all of the form [�, r], where � is
some small number6. The net e�ect of a �xed threshold corridor in the face of increasing
embedding dimension is that fewer and fewer pairs of points are recurrent, causing the
trp to fade. rp structure also appears to be independent of dE for the Lorenz and
R�ossler data sets, as shown in �gures 5 and 6. The same is also true of the sine-wave
time series (�gure 7).

6We do not use 0 as the lower bound in order to avoid trivial recurrences.
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Figure 6: These four trps were generated from data from a numerical integration of the
R�ossler system. trps (a){(d) represent embedding dimensions 1{4, respectively, and
all four plots used identical threshold corridors and time delay values. Again, note the
striking structural similarity: the only apparent variation is a lightening of the trp with
increasing embedding dimension.
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Figure 7: These four trps were generated from noise-free sine-wave data. trps (a){(d)
represent embedding dimensions 1{4, respectively; all four plots used identical threshold
corridors and time delay values. As in the three other data sets, the embedding dimension
does not appear to a�ect the general nature of the rp structure.
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The fact that the qualitative features of rps are independent of embedding dimen-
sion in all of the (very di�erent) data sets that we have examined is highly suggestive.
Analytical justi�cation of this strong pattern of similarity is one of the current focuses
of our research e�ort. Of particular interest are two aspects of this behavior. First, why
does it happen? Recurrence plots expose distance relationships in the data | relation-
ships that, should (perhaps) change as the dynamics are unfolded by the embedding
process. An obvious ansatz is that since the time series really is only one dimensional,
perhaps it makes sense that recurrence patterns present in one-embeddings capture its
essential properties. However, such an explanation seems to violate the whole point of
the delay-coordinate embedding process, wherein the multi-dimensional characteristics
of the dynamics are recovered from one-dimensional signals. The second goal of our
current research is to work out a formally justi�able and meaningful way to codify the
structural characteristics of recurrence plots. Lumped statistical measures, such as those
of RQA, are a good starting point, but these methods cannot capture the spatiotempo-
ral details of the dynamics. We are currently investigating various pattern recognition
and topological analysis techniques | perhaps focusing on the unstable periodic orbits
embedded within the chaotic attractors in the data sets | in order to develop methods
that allow sensible and useful structural classi�cation and comparison of rps.

3.2 Applying RQA to the Dynamic Logistic Map Time Series

As mentioned in section 1, rps can be used to detect changes in the dynamics of a
system. Trulla, Giuliani, Zbilut, and Webber[13], for instance, used RQA to recognize
bifurcations in the dynamics of the logistic equation. In this section, we duplicate these
results without embedding the data7.

The well-known logistic map is given by the following construction:

xn+1 = �xn(1� xn)

for some choice of �, which we will call the dynamic parameter, and some initial condition
x0. When studying this well-known system, one usually �xes the parameter � and
iterates the map from x0, discarding the �rst few hundred (or thousand) iterates in
order to order to allow any transient behavior to die out. This map exhibits a variety
of periodic and chaotic behaviors for dynamic parameter values between � = 2:8 to 4:0,
and the parameter values at which the bifurcations occur are also well known.

In order to show that RQA is an e�ective method for detecting bifurcations, Trulla,
Giuliani, Zbilut, and Webber[13] applied their analyses to a somewhat di�erent logistic
map time series | one in which the transient behavior was not allowed to die out.
They began with dynamic parameter � = 2:8 and initial condition x0 = 0:6. After each
iteration, they incremented � by 0.00001 until � = 4.0, yielding a nonstationary time
series of 120,001 measurements of x. They then embedded the data in three-dimensional
space, divided the trajectory into 11,920 epochs of 800 points, in which epoch (k + 1)

7In the original experiment, Trulla, Giuliani, Zbilut, and Webber used dE = 3.
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began ten points farther along8 the original time series than epoch k, and calculated
rec and det for each epoch in the sequence. Their main conclusion was that these two
RQA statistics were better than classical statistical measurements, such as mean and
standard deviation, at distinguishing between periodicity and chaos.

We repeated this analysis and obtained identical results. The results for dE = 3
appear in �gure 8: part (a) shows the signal itself, while (b), (c), and (d) give the rec,
det, and 1=linemax results, respectively, for dE = 3 and time delay � = 1. The vertical
lines on the �gure indicate bifurcation points, as determined by careful examination of
the signal. On the whole, the RQA statistics pick these bifurcation points up very nicely.
Where the bifurcation involves a transition between periodic and chaotic behavior, there
are abrupt changes in all three statistics; in the direction from periodicity to chaos, rec
and det increase and 1=linemax decreases (and vice versa). Changes in all three statistics
also accompany bifurcations between di�erent types of periodic orbit | e.g., the two-
cycle to four-cycle bifurcation near � = 3:48. In 1=linemax, these appear as small spikes,
which are somewhat obscured by the scale and the vertical lines. At the period-doubling
bifurcations, rec drops sharply because points are suddenly not recurrent with respect
to points on the other branch of the orbit. det also drops, although not as sharply; the
bifurcation leads the dynamics into another periodic regime, where the recurrent points
are still organized into coherent structures.

In order to explore the role that embedding dimension plays in RQA, we then re-
peated the same analysis with di�erent embedding dimensions. The results were vir-
tually identical. Figures 9, 10, and 11 illustrate this, showing the same three RQA
statistics for the cases dE = 1; 2; 3, and 4. The vertical lines in these �gures are
the same as those in �gure 8; in all cases the time delay � = 1. The correspondence is
striking: all three RQA statistics pick up the bifurcation points just as well when dE
= 1 as when dE = 3, as is apparent from a vertical comparison of �gures 9{11. There
are some minor shape di�erences in the plots, but the bifurcation points are equally
distinguishable in all four embeddings. This implies that the results and claims in [13]
may not really require embedding the data.

The logistic map is, of course, fundamentally one-dimensional, so one might natu-
rally expect any data analysis results to be independent of dE

9. The next logical step in
exploring the e�ects of embedding dimension on the qualitative and quantitative struc-
ture of recurrence plots is to run a similar experiment on data from a higher-dimensional
system.

3.3 Applying RQA to the Dynamic Lorenz Time Series

The results in the previous section suggest that RQA performed on 1-embeddings of
time-series data is a useful method for detecting bifurcations. In this section, we test

8In this formulation, epoch k overlaps with the last 790 points of epoch (k � 1) and with the �rst
790 points of epoch (k + 1))

9Trulla et al. do not give any justi�cation for having embedded this time series in R3.
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Figure 8: (a) the dynamic logistic map time series, plotted vs. parameter �. The vertical
lines are drawn at bifurcation points of the signal. This is not the standard bifurcation
diagram of the logistic map; here, the transients were not allowed to die out. (b), (c)
and (d) are rec, det, and 1=linemax, respectively, plotted vs. parameter �, using
embedding dimension dE = 3 and time delay � = 1. In all three RQA calculations,
threshold corridor was [0, 0.0149] and minimum line length was 2. Note that the RQA
statistics are e�ective indicators of the dynamical bifurcations.
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Figure 9: The RQA statistic rec computed from the dynamic logistic map data set
shown in part (a) of the previous �gure. (a){(d) show rec results for embedding di-
mension dE = 1{4, respectively, with time delay � = 1. Part (c) is the same plot as
part (b) of the previous �gure. Note how the rec values shown in all four plots pick up
the bifurcation points of the signal equally well | even the one with dE = 1. Threshold
corridor was [0, 0.0149].
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Figure 10: The RQA statistic det computed from the dynamic logistic map data set
shown in part (a) of �gure 8. (a){(d) show det results for embedding dimension dE
= 1{4, respectively, with time delay � = 1. As before, all four det computations pick
up the bifurcation points of the signal, including the dE = 1 calculation. Minimum line
length was 2. Part (c) is the same plot as part (c) of �gure 8.
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Figure 11: The RQA statistic 1=linemax computed from the dynamic logistic map data
set shown in part (a) of �gure 8. (a){(d) show 1=linemax results for embedding dimension
dE = 1{4, respectively, with time delay � = 1. As in the previous two �gures, this
statistic clearly picks up the bifurcation points of the signal, even if the data were not
embedded. The initial at area of this plot corresponds to the long initial periodic regime
of the signal, for which we would expect a zero value of the leading positive Lyapunov
exponent. Part (c) is the same plot as part (d) of �gure 8.
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Figure 12: Dynamic Lorenz time series. This signal was generated from the Lorenz
system of equations (1) by �xing � = 10:0, b = 8=3, and incrementing the dynamic
parameter r from 28:0 to 268:0 by 0:002 at each integration step.
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this hypothesis further by applying RQA to various embeddings of time-series data from
the Lorenz system. Speci�cally, we integrated the Lorenz equations numerically with
fourth-order Runge-Kutta and a timestep of 0.01, holding � and b �xed (10 and 8/3,
respectively) and varying r from 28.0 to 268.0, and used the x value as the time series.
The r-increment was 0.002 per integration step. The signal is shown in �gure 12. For
this particular range of parameter values, the behavior of this system is extremely well
studied; see, for example, [10, 11]. As in the case of the logistic map data of section 3.2,
this time series is somewhat unusual: it includes some amount of transient behavior
at each step. One could, of course, allow the transient to die out each time r was
incremented before starting to gather time series samples. However, part of the point of
this technique is to be able to detect bifurcations as they occur, so an experiment with
dynamically changing behavior is an appropriate test case.

The results of RQA on the dynamic Lorenz time series are shown in Figures 13, 14,
and 15. The vertical lines on these plots identify three of the known periodic windows:
99:524 < r < 100:795, 145 < r < 166, and r > 214:4. It is clear from �gure 13 that
1=linemax is an e�ective periodic window indicator: all three of the windows correspond
to markedly lower values for this RQA statistic. The uctuation of the values at the
beginning of the periodic windows probably stems from the transient nature of the signal;
if the transient is slow, the dynamics may require some time to reach the periodic orbit.
The at areas at the very left of the 1=linemax plots | which grow shorter as dE increases
| might also lead one to conclude (mistakenly) that the signal is periodic for r-values
just greater than 28. We believe that this anomaly is due in part to the fact that
the attractor size changes with r, while we used a single, �xed threshold corridor for
the entire signal10. A better experiment might be to adapt the threshold corridor in
accordance with attractor size; we are currently working out how to do so in a sensible
manner. At any rate, it is clear that all four 1=linemax plots are qualitatively quite
similar. Figure 14 shows rec results for the same signal. The �rst periodic window
(around r = 100) is markedly obvious and the second one is indicated by a leveling out
of rec, but the third one does not leave a strong, well-delineated signature on these
plots. Again, this is probably due in large part to the e�ects of the change in attractor
size with parameter r. The similarity of the four plots is the main point we wish to stress
here. The det results for the dynamic Lorenz signal are shown in �gure 15. The obvious
similarity between the four plots further supports our hypothesis that the dE = 1 RQA
calculation is a su�cient indicator of the changes in the dynamics of this signal. All four
curves show a marked increase for the �rst known periodic window (around r = 100)
and an increase and leveling out across the second periodic window (between r = 145
and r = 166), followed by an abrupt decrease above r = 166. The third periodic window
(r > 214:4) is reected in all four plots by a signi�cant increase in det.

It is worth noting that the det results are highly sensitive to the choice of minimum
line length. For example, when we ran the same experiment using a minimum line length
of 2 (instead of 10), the dE = 1 det graph was signi�cantly di�erent from the other

10We did not see this type of anomaly in the dynamic logistic map experiment because the domain
of that map is [0,1], independent of �.
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Figure 13: RQA statistic 1=linemax for the dynamic Lorenz time series. (a){(d) show
1=linemax results for dE = 1{4, respectively, with time delay � = 1. The vertical lines
indicate several parameter ranges for which the Lorenz system is known to be periodic.
This statistic was the best one overall at picking up the known periodic windows, which
correspond to low (near zero) values of 1=linemax. Since 1=linemax is related to the
leading positive Lyapunov exponent, this makes sense; one would expect the leading
Lyapunov exponent to be positive in chaotic regions and zero in periodic regions. Ad-
ditionally, there is little signi�cant variation between the four plots. (Note di�erent
vertical scales.)
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Figure 14: RQA statistic rec for the dynamic Lorenz time series. (a){(d) give rec
results for dE = 1{4, respectively, with time delay � = 1. The vertical lines indicate
several parameter ranges for which the Lorenz system is known to be periodic. This
statistic was the best indicator of the �rst periodic window (the bulge at r � 100). As
before, there is little signi�cant variation between the four plots. (Note di�erent vertical
scales.)
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Figure 15: RQA statistic det for the dynamic Lorenz time series. (a){(d) give det
results for dE = 1{4, respectively, with time delay � = 1 and a minimum line length of
10. Note the similarity of the plots, which all give indication of the changing dynamics
that this signal is known to exhibit.
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three. It is important to be careful when choosing parameters for RQA; we recommend
running experiments using several di�erent parameter choices. One of the shortcomings
of RQA is revealed here { that of how to intelligently choose the analysis parameters.

The obvious next step, on which we are currently working, is to perform RQA anal-
yses on dynamic data sets from systems whose known dimension is greater than three.
Similar results on such a data set would further strengthen our hypothesis that in or-
der to perform RQA on a data set one need not �rst perform any delay-coordinate
embedding.

4 Conclusions and Future Work

Recurrence plots of experimental data appear to be quantitatively and qualitatively in-
dependent of embedding dimension. The results presented here support this hypothesis
through diverse examples in several dynamical systems. In particular, we have demon-
strated that the Recurrence Quanti�cation Analysis of Trulla, Giuliani, Zbilut, and
Webber[13], a statistical, quantitative rp analysis method, does not require time-series
embedding. That is, for the purpose of �nding bifurcation points in data sets, dE = 1
is adequate for computation of the RQA statistics. RQA analysis involves relative com-
parisons; we do not know, say, whether a rec value of 2.1% or 1.7% is the correct value
for a given data set (or even what it might mean for one value to be \correct"). For the
purpose of �nding bifurcation points in a data set, however, the dE = 1 calculation of
RQA statistics works just as well as the calculations that involve a higher embedding
dimension.

RQA is the best extant set of tools for rp analysis, but its lumped statistics cannot
capture the details of the spatiotemporal dynamics of a time series. The ultimate goal of
this line of research is to develop structural analysis tools, based in theory and veri�ed
in experiment, that will allow us to systematically and reliably classify the qualitative
structure of these intriguing plots. We are focusing on methods that exploit pattern
recognition techniques to identify and classify the topological features of rps.

If dE = 1 recurrence plots do indeed capture the same information as do those
generated using higher embedding dimensions, then recurrence plot analysis can pro-
ceed in the absence of the considerable di�culties and hazy heuristics that inform the
delay-coordinate embedding process. Of course, the di�culties that are inherent to re-
currence plot analysis itself will remain, but the overall process will have been simpli�ed
signi�cantly.
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