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A recurrence plot is a two-dimensional visualization technique for sequential data. These plots are
useful in that they bring out correlations at all scales in a manner that is obvious to the human eye,
but their rich geometric structure can make them hard to interpret. In this paper, we suggest that the
unstable periodic orbits embedded in a chaotic attractor are a useful basis set for the geometry of a
recurrence plot of those data. This provides not only a simple way to locate unstable periodic orbits
in chaotic time-series data, but also a potentially effective way to use a recurrence plot to identify
a dynamical system. © 2002 American Institute of Physics. #DOI: 10.1063/1.1488255$

Chaotic attractors contain an infinity of unstable periodic
orbits. These orbits are interesting not only because they
represent an element of order within chaos, but also be-
cause they make up the skeleton of the attractor, and in
an easily formalized way. An orbit on a chaotic attractor,
in particular, is the closure of the set of unstable periodic
orbits, and that set is a dynamical invariant. Their insta-
bility, however, makes them hard to find, and algorithms
that do so are computationally complex. This paper pro-
poses that the recurrence plot, a two-dimensional visual-
ization technique for sequential data, is a useful and rela-
tively inexpensive way to get around this problem.
Moreover, thinking about unstable periodic orbits is a
good way to understand the rich geometric structure that
appears on recurrence plots of chaotic systems. These ob-
servations suggest not only a simple way to locate un-
stable periodic orbits in chaotic time-series data, but also
a potentially effective way to use a recurrence plot to
identify a dynamical system.

I. INTRODUCTION

A recurrence plot !RP" of a N-point sequence
x! 1 ,x! 2 , . . . ,x!N is a visualization of the recurrence matrix of
that sequence: the pixels located at (i , j) and ( j ,i) on the
recurrence plot are black if the distance between the ith and
j th points in the time series falls within some threshold cor-
ridor:

% l!!!x! i"x! j!!!%h

for some appropriate choice of norm and white otherwise.
See Fig. 1 for an example. This technique, first introduced by
Eckmann, Kamphorst, and Ruelle12 and developed further by
Zbilut, Webber, and others,15,22,29 can be applied to time-
series data in order to bring out temporal correlations in a
manner that is instantly apparent to the eye. Unlike an FFT,
for instance, a recurrence plot lets the analyst see not only
what frequencies are present, but exactly where the corre-
sponding signals occur. This technique has another important
practical advantage in that it can be used to visualize nonsta-
tionary data, making it a useful analysis tool for physiologi-

cal data6,8,19,21,28,29 and driven systems,9 among other things,
and it is quite robust in the face of noise.30 Better yet, an RP
of time-series data from a dynamical system !i.e., a map or a
flow that has been temporally discretized by sampling or
numerical integration" preserves the invariants of the
dynamics,24 and its structure is at least to some extent inde-
pendent of embedding.20,30 Note that the ordering of the data
points need not be temporal; RPs are also an effective means
for analyzing other sequences, such as the amino acids in a
protein.16 Last, free software for computing and analyzing
RPs is available on the World Wide Web.1

RPs of chaotic time-series data, as is visible from Fig.
1!b", have a rich and highly characteristic structure. The first
effort in the literature to define a quantitative metric for this
structure was the recurrence quantification analysis !RQA"
introduced in Ref. 32, which defines several statistical mea-
sures on the black points in a recurrence plot. These quanti-
ties measure many of the same dynamical properties as do
the more-traditional measures like the Lyapunov exponent
and the correlation dimension, and they provide a useful way
to quantify RP structure, but their lumped statistical nature
means that RQA cannot elucidate the spatiotemporal details
of the dynamics. RQA results on structurally dissimilar RPs,
for instance, can be virtually identical; see Fig. 4 of Ref. 20
for an illustration. Techniques for analyzing RP structure in
more detail would be extremely useful: not only to under-
stand the relationship between the intricacies of RP patterns
and the dynamics of a system, but also to make it possible to
turn that information to advantage !e.g., to compare two dy-
namical systems in a simple and yet meaningful way, using
only their recurrence plots". The authors of the original RQA
papers are taking a linear algebra approach to structural RP
analysis, combining principal component analysis and RQA
to pick out ‘‘important directions’’ and statistics.31 The re-
search described in this paper focuses on chaotic time-series
data and takes a more geometric approach to RP structure
classification. In particular, we claim that the set of unstable
n-periodic orbits that lie within a chaotic attractor are a use-
ful geometric basis for RPs of any orbit on that attractor.
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II. UNSTABLE PERIODIC ORBITS

Unstable periodic orbits or UPOs make up the skeleton
of a chaotic attractor. More formally, there are an infinite
number of UPOs, of all periods, densely embedded in the
attractor; indeed, an orbit on that attractor is the closure of
the set of UPOs and the trajectory can be thought of as ‘‘hop-
ping’’ from one UPO to the next.3–5,11,13 Figure 2 shows
several examples. The set of UPOs in an attractor is a dy-
namical invariant; their number, distribution, and properties
‘‘unfold’’ the structure of chaotic orbits, and they can be used
to calculate other invariants, such as fractal dimension and
topological entropy.5 Algorithms for finding UPOs in time-
series data are straightforward: one watches for close returns
on a plane of section, then bins and averages several occur-
rences in order to reduce noise.18 This procedure is quite
time consuming, however, for two reasons: it not only in-
volves an ensemble of nearest-neighbor searches, but also
relies on the ergodicity of the orbit in order to visit each

UPO. One can accelerate matters somewhat by using esti-
mates of the local dynamics,26,27 but the computational com-
plexity is largely inescapable.

III. RECURRENCE PLOTS OF UPOS

The notion of a chaotic attractor as the closure of the set
of the UPOs embedded within it—a decomposition that has
been used to understand systems ranging from
semiconductors10 to neurons25—is patently obvious if one
uses recurrence plots to examine a trajectory on that attractor.
Figure 3, for example, shows RPs of the x component of the
trajectories in Fig. 2. Note how the repeated patterns in parts
!b", !c", and !d" of Fig. 3—that is, the RPs of the UPOs—are
building blocks in the RP of the overall attractor that is
shown in Fig. 3!a". A two-by-two copy of the crosshatch
pattern in part !b" appears about three-fifths of the way up
the diagonal of part !a", for instance, and the two-cycle pat-
tern in part !c"—which resembles a slice of bread with a
cross superimposed upon it—appears at least four times
along the diagonal of part !a", as well as in several other
places. These blocks simply reflect time intervals when the
trajectory is travelling on or near the corresponding UPO.
Note that the time scales of the RPs have to be identical for
this kind of overlay analysis to make sense, so the trajecto-
ries used to construct parts !b", !c", and !d" of Fig. 3 involve
repeated transits around the corresponding UPOs. #The tra-
jectory in part !a" is 1000 integrator steps long, but the pe-
riod of the two-cycle in part !c" is roughly 189 timesteps. In
order to generate RPs with identical axes, we followed that
UPO for 5.29 orbits to obtain a 1000-point time series.$
Comparison of parts !c" and !d" shows yet another layer of
compositionality: the five-cycle appears to contain an in-
stance of the two-cycle. We are currently investigating the
mathematics behind this effect.

These conclusions are largely independent of the param-
eters used to construct the recurrence plots. The choice of the
x component, for instance, is made without loss of general-
ity; all of the discussion in the previous paragraph holds if
one uses the y or z components instead, or if one uses full
state-space (xyz) trajectories. See our website for associated
images.2 The choice of norm and threshold corridor, while
unimportant from a theoretical standpoint, do matter for
practical purposes. Different threshold corridors make the
features on an RP thicker or thinner; this does not destroy
one’s ability to compare these features, but comparing two
finely filigreed structures is easier than matching the edges of
two black blobs. Norms can have similar effects; using the
maximum norm on an attractor that has a high aspect ratio,
for instance, will effectively obscure dynamics along the at-
tractor’s thin direction. Again, see our webpage for graphical
images that demonstrate these effects.

This obvious geometric decomposition of recurrence
plot block structure suggests several interesting and poten-
tially useful applications. Not only do RPs of UPOs play the
role of geometric basis elements for the structure of an RP of
a chaotic attractor, but they are also a useful way to identify
those UPOs—a task that is algorithmically complex and
computationally expensive. To find a UPO, one would sim-

FIG. 1. A signal and its recurrence plot: !a" a time-series plot of the x
variable from an 2000-point fourth-order Runge–Kutta integration of the
Lorenz equations with (a ,r ,b)#(16,45,4) and timestep &t#0.01 !b" a re-
currence plot of that series with a threshold corridor of #0,2$, using the
Euclidean 2-norm. Some RP formulations use a color-coding scheme to
represent a range of distances according to hue.
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ply construct the RP of a trajectory on a chaotic attractor,
look for repeated structures, and use that information to in-
dex into the trajectory and find the associated state variable
values. This does not sidestep all of the complexity, of
course; the time required to construct an RP grows as the
square of the number N of points if it is coded naively—or
O(N logN) if coded intelligently, using k–d trees or some
other appropriate data structure.14 The basic algorithms18,26,27
for finding UPOs in experimental data, however, are at least
O(N3), so using RPs is much faster. The geometric decom-
position suggested by Fig. 3 also provides a useful way to do
a quick, qualitative comparison of two chaotic systems. The
set of UPOs in an attractor uniquely identifies it, and in a
well-defined way. Thus, if RPs of two trajectories have dif-
ferent building blocks in their structure, the trajectories are
probably not from the same system; conversely, identical
block RP structure suggests identical dynamics.

In practice, of course, there are several caveats. No two
trajectories on a chaotic attractor will visit exactly the same
UPOs, and no finite-length trajectory will visit all UPOs. A
UPO’s stability properties dictate how trajectories travel
upon and around it; consider a ball bearing rolling around the
apex of a bagel versus one rolling around the rim of a fine

porcelain teacup. The one-cycle in Figs. 2!b" and 3!b", for
instance, appears very frequently in any trajectory on this
attractor, while the five-cycle in Figs. 2!d" and 3!d" is com-
paratively rare. One can quantify these effects by integrating
the variational equation along the orbit and observing the
behavior of the transverse component, as is very nicely de-
picted in the work of Helwig Löffelman and other members
of the Institut für Computergraphik in Vienna.23 If the
Lyapunov exponents and stable/unstable manifold geometry
of the dynamical system are such that a small perturbation
off the UPO grows very quickly—the teacup situation—then
trajectories are not only more likely to diverge from that
orbit but also less likely to visit it in the first place, and so
that UPO will leave its signature neither in the trajectory nor
on the RP. High-period UPOs pose particular challenges in
this regard, as their length provides more opportunity for the
unavoidable !i.e., floating-point arithmetic on a computer or
noise in an experiment" transverse perturbations to grow.
This means that the claims made in this paper, while true in
general, cannot be used in practice to find every UPO. Using
a longer trajectory improves matters, of course, and there is
evidence that a system’s short, low-period UPOs provide
‘‘good’’ descriptions of its dynamics,5 so this limitation is by

FIG. 2. Unstable periodic orbits em-
bedded within the Lorenz attractor:
!a" the full attractor, !b" an unstable
one-cycle starting from (x,y,z)
#!10, "2.341 99, 53.8658", !c" an
unstable two-cycle starting from (x,y,z)
#!10, "4.080 38, 55.2704", !d" an
unstable five-cycle starting from
(x , y , z) # !10, "4.323 95, 55.4605".
Same system and integration param-
eters as Fig. 1. In all images, axis
ranges are x##"40, 40$, y##"40,
40$, z##0.80$, and the plane of section
that defines the orbit period is x#10.
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no means fatal. Incidentally, the algorithms in Refs. 18, 26,
and 27 suffer from the same problems, since they too rely on
the system dynamics to cause the trajectory to visit each
orbit. In order to find high-period and/or highly unstable
UPOs, one must fall back on analytical methods !e.g., Ref.
17 for flows or Ref. 7 for maps", but such methods cannot be
used unless one has the system equations and thus are all but
useless in experimental situations.

IV. SUMMARY

Unstable periodic orbits are a useful geometric basis for
the complex structure of a recurrence plot of a trajectory on
a chaotic attractor. Their locations in state space and in time,
as well as the compositional nature with which they make up
the structure of the attractor, are immediately apparent to the
eye, and in a manner that aids one’s understanding of a cha-
otic attractor as the closure of the UPOs that are embedded
within it. These ideas suggest several practical applications.
The RP representation is useful not only for identifying and
locating UPOs—a task that is computationally demanding—
but also for comparing one dynamical system to another: the
practical task termed ‘‘modeling’’ by engineers, ‘‘scientific
discovery’’ by artificial intelligence practitioners, and ‘‘sys-
tem identification’’ by control theorists. Because RPs pre-
serve a system’s invariant dynamical structure, and because
the UPOs that appear so prominently on a RP are dynamical

invariants, one can draw sensible qualitative conclusions
about the similarity or difference between two systems from
comparisons of the obvious block structures in RPs of their
trajectories.
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