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Human movement is an ongoing optimization pro-
cess. A baseball player attempts to contact a ball
with a bat so as to propel the latter as far as pos-
sible; a rower tries to impart the maximum possi-
ble force to the water through an oar, while at the
same time avoiding any disturbance to the boat’s for-
ward motion. The cost functions involved are com-
plex, implicit, nonunique, fuzzy, and often subjec-
tive. Hundreds of muscles—most of which are not
under conscious control—are involved in every mo-
tion, and different body geometries, coaches, chore-
ographers, etc., prescribe different criteria for optimal
movement. At the same time, the results are unmis-
takeable: the difference between breakdancing and
ballet is patently obvious, even to the untrained eye.

Automatic generation of motion sequences is an
interesting problem that has applications in graphics
and animation, in training sequence generation, in
gait analysis, and even in artistic innovation[2, 3, 7].
The moving picture industry, needless to say, has de-
voted tremendous numbers of cycles to this problem,
but the algorithms involved rely on human animators
to specify “keyframes” that act as skeletons for the
movement. One can use mathematical interpolation
techniques like splines to move individual body parts
from one keyframe to another, but these kinds of
methods do not address the problem of kinesiological
illegality (e.g., that the knee only bends 180 degrees,
or that arms cannot pass through ribcages). Many
animation packages, such as Life Forms or Poser1, use
an augmented spline approach that relies on a table

1fas.sfu.ca/lifeforms.html and

www.metacreations.com/products/poser3/

of kinematic constraints to avoid illegal movements,
but this type of approach is somewhat ad hoc. One
can also generate movement sequences by modeling
the physics of the body—e.g., using differential equa-
tions and solving the corresponding boundary-value
problem[9]. Physics-based animation approaches are
extremely interesting and highly promising, but also
very difficult; deducing the control equations that hu-
mans use to recover their balance after a jump, for
example, is a Ph.D. thesis-level problem[13]. Stylisti-

cally faithful interpolations are even harder to imple-
ment; neither splines nor F = ma can easily capture
or enforce, for instance, the requirement that classical
ballet emphasizes position over motion2, and devel-
oping a mathematics- or physics-based approach that
does so would be all but impossible.

In this short paper, we describe an alternative
solution to the “tweening” problem: a class of
corpus-based schemes that generate physically consis-
tent and stylistically consonant movement sequences
between pairs of specified body positions. The
computer program MotionMind, which instantiates
these ideas, takes as input a corpus of movement
sequences—e.g., ten Balanchine ballets—and a pair
of body postures A and B; its output is a movement
sequence that starts at A, ends at B, and fits the
style of the corpus. If A and B are are “far apart,”
as measured by some metric that takes into account
both the physics of the human body and the style
of the movement genre, this can be nontrivial. Mo-
tionMind solves this problem by using statistical and
graph-theoretic techniques to “learn” the grammar
that is implicit in the corpus, and then applying sim-
ple heuristic search methods to the resulting graphs
in order to generate movement sequences that are
consistent with that grammar.

MotionMind simplifies the complex task of repre-
senting human motion by disregarding limb length.
Each body posture is represented by a set of 23
quaternions—a common representational device in
graphics that consists of a 3-vector and an angle of

2In ballet, body parts tend to describe piecewise-linear

paths through space, emphasizing the positions at the junc-

tions of those linear segments; in modern dance, on the other

hand, the motion between the endpoints is often the important

feature, and the choreography is crafted accordingly.
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rotation around that vector[8]—each of which spec-
ifies the position of one of the body’s main joints
(omitting, e.g., finger and toe knuckles).

To capture the movement patterns in a corpus, Mo-
tionMind examines that corpus joint by joint, build-
ing a directed, weighted graph for each one. Each ver-
tex in these joint transition graphs represents a joint
position (e.g., elbow bent to 10 degrees); edges repre-
sent observed transitions between the corresponding
positions, weighted using the negative log-likelihood:
small values correspond to transitions that are more
likely to occur. An example of such a graph is shown
in figure 1. The intricate patterns of human move-
ment are reflected by the complex topology of the
graph. Note that joint angle is a continuous vari-
able, which would imply a potentially infinite number
of vertices; to avoid this problem, MotionMind dis-
cretizes the quaternion space (cf., snapping objects
to a grid in graphics).

After building the set of 23 joint transition graphs

that capture the movement grammar, MotionMind
applies memory-bounded A* search[11] in order to
find interpolation sequences. In general, A* finds a
path from an initial state to a goal state by progres-
sively generating successors of the current state in the
search, computing a heuristic score that combines the
existing path length and an estimate of the distance
to the goal, and then expanding on a best-score-first
basis. See [12] for more details. In this problem, the
initial and goal “states” are actually 23 states in sep-
arate graphs, and MotionMind needs to search all 23
graphs in parallel (for a path from the knee angle in
posture A to the knee angle in posture B, another
path from the ankle angle in posture A to the ankle
angle in posture B, and so on). One obvious choice
of scoring function—which is based upon the assump-
tions that the sequence should be as short as possible
and that common movements should be chosen over
rare ones—is to minimize the sum of the weights of
the edges in the path.

The basic idea here is fairly simple, but further con-
sideration reveals a variety of important additional
constraints. One really wants the lengths of all of
those paths to be roughly equal, for example, in or-
der that the different body parts arrive at the tar-
get posture at about the same time. Moreover, the
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Figure 1: A joint transition graph that represents
the movement patterns of the hips in a corpus of 38
short ballet pieces, comprising 1720 individual pos-
tures. The numbers in each state identify the dis-
cretized position of the joint. Edge weights and iso-
lated vertices have been omitted in the interests of
clarity. After [11].
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search is complicated by the fact that joint positions
cannot be interpolated in isolation: the movement
patterns of the ankle, for instance, are strongly influ-
enced by whether or not the foot is on the ground—
information that is implicit in the positions of the
pelvis, knees, etc. This requires that the expansion
of nodes in the search be context dependent in a
somewhat unusual way. MotionMind uses a Bayesian
network[10], shown in figure 2, to model the con-
straints induced on joint motion by gravity and body
topology. The pelvis is the root of this tree; three

(a) (b)

Figure 2: An influence diagram that explicitly rep-
resents the coordination of joints of the human
body. Part (a) depicts the body and part (b) shows
the inter-joint dependencies induced by gravity and
topology: for instance, the position of the pelvis in-
fluences the positions of both hips hr and hl and the
lumbar spine l, but the right and left ankles kr and
kl do not directly influence one another. Without
this simplifying assumption, the search space for this
problem is intractable. After [11].

branches lead from this root to nodes corresponding
to the right hip, the left hip, and the lower spine3.
Each hip joint is the parent node to a knee, and
so on. MotionMind assigns a conditional probabil-
ity distribution, estimated from the corpus, to every
(parent,child) pair in the tree, and models coordina-

3The sacrum and the five lumbar vertebrae are lumped to-

gether. This compromise sacrifices back suppleness for lowered

complexity.

tion by incorporating this number into the A* scoring
function.

Figure 3 shows an example MotionMind sequence,
computed using a ballet corpus. The starting and
ending body postures (top left and top right in fig-

ure 3, labeled 1 and 10 , respectively) are quite
different; note the facing of the dancer and the
weight distribution on the feet, for example. Mo-
tionMind’s eight-move interpolation sequence moves
between those positions in a very natural way. Its
first move, for instance, is to lower the left leg, a
natural strategy if one is going to change one’s fac-
ing and end up on two feet. The following move is
a simple weight shift (frames 4 and 5 ), in prepa-
ration for a lift of the right leg. This lift, which is
not strictly necessary to move from the fifth frame
to the tenth, is an innovation that the program in-
serted because of the observed patterns in the corpus;
it reflects the fact that ballet dancers rarely spin with
both feet flat on the ground. Perhaps the most inter-
esting thing about this interpolation sequence, from
a balletic standpoint, is the relévé4 that the inter-
polation procedure inserted between frames 6 and

10 . Many relévés appear in the corpus, but none
of them are associated with upper body positions
that resemble the one that appears in this sequence.
MotionMind has invented a physically and stylisti-

cally appropriate way to move the dancer between
the specified positions. The interpolation sequence in
figure 3 includes a variety of other stylistically con-
sistent innovations as well; consider, for example, the
uplifted chest and chin in frames 7 and 9 —posture
elements that are quintessential ballet style. Recall
that these postures were not simply pasted in ver-
batim from the corpus; they were synthesized joint

by joint using the transition graphs and influence-
diagram directed A* search, and their fit to the genre
is strong evidence of the success of the methods de-
scribed in the previous section. mpeg movies of this
sequence, along with many others, are available on
the web[1].

MotionMind’s algorithms have several interesting
failure modes. Because of the directed nature of the

4A relévé, which consists of lifting up on one’s toes, is a

stylistically required component of a direction shift in ballet.
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Figure 3: A “tweening” sequence generated by MotionMind. The starting and ending positions are shown at
the top left and top right, respectively; the eight frames below them were computed by MotionMind. After
[11].

graphs, the search algorithm sometimes has trouble
finding interpolation subsequences between body po-
sitions that occur in inverted temporal order (e.g.,
reversing a baseball swing). Moreover, it often finds
relatively long paths between positions that appear
very similar; in one such instance, where the task
was a simple 90-degree rotation of the right shoul-
der around the long axis of the arm, MotionMind
constructed an 65-move sequence that involved much
leg and trunk movement. Both of these problems are
caused by limited corpus size. 1720 postures is an ex-
tremely meager sampling of human motion, so the re-
sulting joint transition graphs are far from being con-
nected, which means that some joint orientations are
just not reachable from others. Even when the graphs
are connected, the search may have to wander all over
the graph to find a path between two given vertices.
If the corpus were large and rich, the graphs would
be highly connected, which would give the search al-
gorithms more leeway. In the existing corpora, how-
ever, the paucity of edges constrains the search to
very narrow (and long) paths that can translate to
stilted, idiosyncratic movement sequences. This is
an unavoidable problem in this application, unfortu-
nately; the dance world has not yet embraced the
notion of computer animation, so the availability of
animated dances is quite limited, and motion-capture
studios are expensive to set up and run. The third in-

teresting failure mode arises from the greedy search
strategy, which creates “inefficiencies” in the inter-
polation sequences—places where the dancer appears
to be headed towards the goal state, but then moves
away. For example, one of the interpolation goals in
figure 3 is to change the figure’s facing from left to
right. By the fourth frame, the dancer has turned to
the right, but in the fifth frame s/he has turned back
to the left again, which is part of what necessitates
the relévé sequence between frames 6 and 7 . Fi-
nally, note that some search strategies—e.g., always
taking the highest-probability branch—can be a sig-
nificant source of cliché.

The primary motivation for the development of
these methods was our work on a mathematical
technique[4] that automatically creates variations on
predefined motion sequences—an idea that was in-
spired by a similar scheme[5, 6] that uses a related
procedure to generate musical variations. This ap-
proach uses the mathematics of chaos to shuffle a
predefined movement sequence by “wrapping” that
sequence around a chaotic attractor. This establishes
a symbolic dynamics that links the movement pro-
gression and the attractor geometry, which one can
then use to generate variations on that original piece.
Variations generated in this manner, whether musical
or choreographic, are both aesthetically pleasing and
strikingly reminiscent of the original sequences. The
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stretching and folding of the chaotic dynamics guar-
antee that the ordering of the pitches or movements in
the variation is different from the original sequence;
at the same time, the fixed geometry of the attrac-
tor ensures that a chaotic variation of Bach’s Prelude
in C Major or of a short Balanchine ballet sequence
are related to the original piece in a sense reminis-
cent of the classic “variation on a theme.” Broadly
speaking, the chaotic variations resemble the orig-
inals with some shuffling of coherent subsequences.
This is the primary source of the stylistic original-
ity of the chaotic variation scheme — in fact, this
type of subsequence shuffling is a well-established cre-
ative mechanism in modern choreography. One prob-
lem with any choreographic technique, automated or
not, that involves subsequence reordering, however,
is that the transitions at the subsequence boundaries
can be quite jarring, and the interpolation algorithms
covered in this paper can smooth these kinds of tran-
sitions in a manner that is both kinesiologically and
stylistically consistent.

The “goal” of choreography is aesthetic appeal,
so it is difficult to analyze the results of this work
using standard scientific criteria5. However, there
are some standard rules, procedures, and patterns in
certain dance and martial arts genres; as described
elsewhere[12], analyses based on these criteria sug-
gest that MotionMind’s sequences are indeed stylis-
tically consonant. Another interesting way to eval-
uate these results is to construct a Turing test: say,
ten sequences generated by a human choreographer
and ten MotionMind sequences, in randomized or-
der. We have put together such a test and admin-
istered it to roughly 100 people. The results are
mixed; most of MotionMind’s sequences are indis-
tinguishable from human-generated ones, but a few
are awkward in an artificial and recognizeable way.
This, in turn, brought out another interesting vari-
able; students who are majoring in dance found this
awkwardness esthetically appealing, while computer
science majors did not.

By applying techniques from statistics, graph the-
ory, and heuristic search, the corpus-based interpo-

5The very notion of objective, quantifyable evaluation

elicited much consternation and mirth—along with some

offense—from our dance colleagues.

lation methods described in this paper automatically
construct interpolation sequences that move from one
specified body posture to another in a physically and

stylistically coherent fashion. Though our objective
in doing this was to tailor generic strategies for a
specific high-dimensional search problem to an un-
usual and demanding domain, the results could cer-
tainly be extended to other domains where the genre
of sequence is important, such as speech recognition
(e.g., filling in missing parts of a signal) or text. Fi-
nally, the implementation of these algorithms allows
for arbitrary body topologies, so MotionMind is by no
means limited to human motion sequences—though
one would, of course, have to adapt the quaternion-
based symbol set and the influence diagram to the
topology of the limbs and joints that are involved.

References

[1] www.cs.colorado.edu/∼lizb/chaotic-dance.html.

[2] J. Birringer. Media and Peformance: Along the
Border. The Johns Hopkins University Press,
1998.

[3] E. Bradley, D. Capps, and A. Rubin. Computers
and choreography. In International Conference
on Dance and Technology, Tempe, AZ, 1999.

[4] E. Bradley and J. Stuart. Using chaos to gen-
erate variations on movement sequences. Chaos,
8:800–807, 1998.

[5] D. Dabby. Musical variations from a chaotic
mapping. Chaos, 6:95–107, 1996.

[6] D. Dabby. A chaotic mapping for musical and
image variation. In Proceedings of the Fourth
Experimental Chaos Conference, 1997.

[7] J. Dunning. How to tell the computer from the
dance. New York Times, February 1843.

[8] W. Hamilton. On a new species of imaginary
quantities connected with a theory of quater-
nions. Proceedings of the Royal Irish Academy,
2:424–434, 1843.

5



[9] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and
J. F. O’Brien. Animating human athletics. In
Proceedings of SIGGRAPH, 1995.

[10] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 1988.

[11] S. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, 1995.

[12] J. Stuart and E. Bradley. Learning the gram-
mar of dance. In Proceedings of the International
Conference on Machine Learning (ICML), 1998.

[13] W. L. Wooten. Simulation of Leaping, Tumbling,
Landing, and Balancing. PhD thesis, Georgia
Institute of Technology, 1998.

6


