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Traditional noise-filtering techniques are known to significantly alter features of chaotic data. In this
paper, we present a noncausal topology-based filtering method for continuous-time dynamical
systems that is effective in removing additive, uncorrelated noise from time-series data.
Signal-to-noise ratios and Lyapunov exponent estimates are dramatically improved following the
removal of the identified noisy points. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1705852#

Traditional linear or Fourier-based schemes for removing
noise are unsuitable for filtering chaotic signals because
they remove all modes in some interval of the frequency
spectrum. Since chaos is characterized by a broad fre-
quency spectrum, this process inevitably destroys part of
the dynamically relevant signal. The dynamical systems
community has developed a variety of nonlinear filtering
methods that exploit the state-space geometry of these sys-
tems in order to remove noise without disturbing the sig-
nal. This paper proposes a nonlinear filtering method
that is based on the characteristic topology of an attractor
of a continuous-time dynamical system. In particular,
such objects are known to be perfect, that is, they contain
no isolated points. In practice, the numerical representa-
tion of an orbit fails to be perfect because of finite sam-
pling andÕor additive noise. We use a variable-resolution
form of topological analysis to find and remove any noisy
points. Experiments with clean Lorenz data contami-
nated with various forms of noise show highly encourag-
ing results: the topology-based filter removes 96–100% of
the noisy points, improving the signal-to-noise ratio
„SNR… from É20 dB to more than 50 dB, with a false-
positive rate of 1.9–2.5%. Estimates of the largest
Lyapunov exponent in these data are dramatically im-
proved following the removal of the identified noisy
points: the noisy data have ls on the order of 10–100,
while ls of the filtered data are 2–4. Data from a labo-
ratory apparatus—a parametrically forced pendulum—
showed equally encouraging results, though of course one
cannot quantify percentages or SNR in real-world data.
Importantly, the method proposed here is not intended to
apply to, and does not work for, any kind of discrete-time
dynamical system or map, and it requires that the time
series be oversampled. These are not unrealistic assump-
tions; most real world experiments involve ‘‘a time series
which is oversampled from a continuous flow but whose
measurement is contaminated with uncorrelated additive
noise...this situation is so common in physics experi-
ments...’’ †Theiler and Eubank „1993…‡. The key feature
of our method is its identification of separation of scale.

Since separation of scale is fundamental to many other
forms of signal that one might be interested in untan-
gling, this method is by no means limited to dynamical
systems—or to filtering applications.

I. INTRODUCTION

Removing noise from chaotic data is highly problematic.
Chaotic behavior is both broad band and sensitively depen-
dent on system state, so traditional filtering schemes—which
simply remove all signal in some band of the power
spectrum—can alter important features of the dynamics, and
in a significant manner. Many authors have recognized this,
see Theiler and Eubank ~1993! for a good synopsis. A variety
of schemes have been proposed for working around this limi-
tation; see Chap. 7 of Abarbanel ~1995! for a review. A few
of these rely on variations of traditional linear filters @Landa
and Rozenblum ~1989!, Ortega ~1995!, Piccardi ~1996!, Pik-
ovsky ~1986!, Schreiber ~1993!#, but the majority use non-
linear approaches. Specific techniques vary, depending on
how much is known about the problem at hand, but the basic
idea is to exploit the fact that deterministic dynamics evolves
upon smooth submanifolds of state space. One family of
noise-reduction methods is based on local approximations to
these submanifolds. Farmer and Sidorowich ~1988!, for in-
stance, use the stable and unstable manifolds of the dynami-
cal system, via forward- and backward-time simulation and
an averaging scheme, to reduce additive noise. Kostelich
~1992! uses a different geometric property of the dynamics,
linearizing around saddle points, where orbits are recurrent.
There are many other approaches in this family; see, for
example, Hammel ~1990! and Kostelich and Yorke ~1988!.
Another family of methods projects the noisy vectors onto
carefully chosen subspaces, iterating the procedure until the
results settle down to what is presumably the true dynamics
@Cawley and Hsu ~1992a, 1992b!, Sauer ~1992!, Schreiber
and Grassberger ~1991!#. If measurements of more than one
state variable are available, this process can be streamlined
@Hegger and Schreiber ~1992!# if one has the full state vec-
tors and also knows the dynamics, one can avoid many of the
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mathematical gymnastics described above, along with their
attendant numerical sensitivities @Bröcker and Parlitz ~2001!

and Davies ~1992!#. Probability and statistics can also be
useful filtering techniques when one knows the dynamics, as
described in Marteau and Abarbanel ~1991!.

The success of these methods amply demonstrates that
the characteristic geometry of the state space of a dynamical
system can be a useful basis for a dynamically meaningful
noise-filtering scheme. Filtering approaches that rest upon
topology can be equally powerful, but have seen far less
investigation. State-space attractors ~that is, v-limit sets! of
continuous-time dynamical systems are perfect sets @since a
point in the attractor either lies on an orbit trajectory ~and is
therefore the limit of nearby points in that trajectory! or is
the limit point of a sequence of trajectories#. A perfect set is
one with no isolated points, i.e., no points x for which there
is a d.0 such that no other point from the set lies in a ball
of radius d about x. In practice, the numerical representation
of an orbit fails to be perfect because of finite sampling
and/or additive noise. Provided that there is a separation of
scale between the sampling effects and the additive noise,
one can effectively identify isolated points and conclude that
they are noisy. This idea is the topic of this paper.

II. APPROACH AND EVALUATION

The broad field of topology is generally concerned with
the features of an object that are invariant under deforma-
tions that stretch and twist but never tear or glue the object.
The ideas and techniques described in this paper are based in
the subset of that field that addresses connectedness, the to-
pological concept that captures the notion of continuity of a
space. An object—more formally, a subspace—is connected
if it cannot be decomposed into two nonempty open sets.
Note that these two sets are open in the subspace topology
~i.e., the intersection of an open set from the parent space
with the subset of points in the subspace!. Because experi-
mental data are not infinite in quantity or precision, however,
we cannot simply use the traditional topological definitions
of connectedness to assess real-world data. Rather, we must
reformulate those notions, as described in Robins ~2000! and
Robins et al. ~1998, 2000!, to fit the discrete nature of the
underlying space ~e.g., the space of floating-point numbers
on a computer, or the space of measurements made by a
sensor that has 1 mV of precision!. The roots of this ap-
proach lie in Cantor’s early work, which defines two points
as epsilon connected if they are joined by an epsilon chain: a
finite sequence of points x0¯xN that are separated by dis-
tances of epsilon or less: ux i2x i11u,e . This provides an
easy way to make explicit the finite precision of real data, to
formulate useful definitions of topological properties that
make sense at variable resolutions, and to deduce the topol-
ogy of the underlying set from the limiting behavior of those
properties.

In this paper, we use several of the fundamental quanti-
ties defined in Robins ~2000! and Robins et al. ~1998, 2000!,
most importantly the number C(e) of the epsilon-connected
components in a set and the number I(e) of epsilon-isolated
points. An epsilon-connected component is a maximal
epsilon-connected subset; an epsilon-isolated point is an

epsilon-component consisting of a single point. As estab-
lished in Robins et al. ~1998!, one can compute C and I for a
range of epsilon values, and deduce the topological proper-
ties of the underlying set—in this case, the true, underlying
orbit of the dynamical system—from the patterns in the C
and I curves. Figure 1 demonstrates the basic ideas. The
point-set data shown in part ~a! form a single e-connected
component for e.e*, where e* is the largest interpoint
spacing, as shown in Fig. 1~b!. In this case, C(e)51. If e is
slightly less than e*, C(e)52; the corresponding
e-components are shown in part ~c!. As e shrinks further,
successively closer point pairs are resolved, and C(e) in-
creases, eventually flattening out at C(e)5N for sufficiently
small values of e, where N is the number of points in the data
set. The precise manner of that increase depends upon the
connectedness properties and fractal dimension of the under-
lying set, as well as the distribution of data points over the
object; this is described briefly in Robins ~2000! and covered
in more depth in Robins et al. ~2000!. Briefly speaking,
C(e)51 for e.e* if the underlying set is connected, then
rises smoothly and sharply with decreasing e because smaller
e values allow successively closer point pairs to be resolved.
This behavior is shown in Fig. 1~d!. If the underlying set is a
totally disconnected fractal, like the set in part ~e! of the
figure, C(e) rises in a stair-step fashion because of the scal-
ing of the gaps in the set. The number of e-isolated points is
closely related to C. A point becomes e-isolated when e de-
creases past the distance to its nearest neighbor. If the data
approximate a perfect set, I(e) behaves in a similar manner
to C(e) for small e; in particular lime→0 C(e)
5lime→0 I(e)5N , where N is the number of points in the
data set. This result was proven by Penrose and Yukich for
the case N→` @Penrose and Yukich ~2001!#. For larger val-
ues of e, a perfect set will have I(e)50. Note that I(e)
<C(e) for all e. If I(e)50 and C(e).0, this implies the
existence of some number of distinct connected components
in the data.

The computer implementation of these calculations re-
lies on constructs from discrete geometry called the minimal
spanning tree ~MST! and the nearest neighbor graph ~NNG!.
The former is the tree of minimum total branch length that
spans the data; see Fig. 1~b! for an example. To construct the
MST, one starts with any point in the set and its nearest
neighbor, adds the closest point, and repeats until all points
are in the tree. $This is essentially Prim’s algorithm @Cormen
et al. ~2001!#. More specifically, it begins with any vertex as
the root and grows the MST in stages, adding at each stage
an edge ~x, y! and vertex y to the tree if ~x, y! is minimal
among all edges where x is in the tree and y is not.% The
nearest-neighbor graph or NNG is a directed graph that has
an edge from xA to xB if xB is the nearest neighbor of xA . To
construct it, one starts with the MST and keeps the shortest
edge emanating from each point. Both algorithms may be
easily implemented in Rd; the computational complexity of
the MST is O(N2) in general and O(N log N) in the plane,
where N is the number of data points. Once these graphs are
constructed, computing C and I is easy: one simply counts
edges. C(e), for example, is one more than the number of
MST edges that are longer than e, and I(e) is the number of
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NNG edges that are longer than e. Note that one must count
NNG edges with multiplicity, since xA being xB’s nearest
neighbor does not imply that xB is xA’s nearest neighbor ~i.e.,
if a third point xC is even closer to xA). Note, too, that the
MST and NNG need only be constructed once; all of the C
and I information for different es is captured in their edge
lengths.

These reformulations and algorithms allow one to assess
the state-space topology of a dynamical system—a funda-
mental and meaningful property—even though the orbits in-
volved are quantized in space and time by the finite resolu-
tion of sensors and computers. As discussed in Robins
~2000!, this can be useful in both discrete- and continuous-
time systems; if the system is a flow, however, topology can

FIG. 1. Computing connectedness: ~a! point-set data and ~b! the minimal spanning tree whose edges connect nearest neighbors in that data. If e.e*—the
largest interpoint gap in the set—all of the points are e-connected ~that is, the number of connected components C51); if e is slightly less than e*, the set
contains two connected components, as shown in part ~c!. The behavior of C as a function of e reflects the topology of the underlying set—the object of which
these points are samples. If that set is connected, C(e) will fall off smoothly with decreasing e, as successively closer point pairs are resolved; see part ~d!.
If the set is a disconnected fractal, as in part ~e!, C(e) falls off in a stair-step fashion because of the scaling of the gaps in the data.
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be even more powerful, as the associated attractors are not
only connected, but also perfect. Figure 2 shows MST-based
connectedness results for the canonical Lorenz system. The
C and I curves exhibit the classic smooth, sharp falloff that
indicates connectedness and perfectness, respectively. This
behavior is affected by the sampling: the falloff is less sharp
for data that are sparsely sampled or nonuniform. As ex-
plained above, C(e) and I(e) results are virtually identical
for the connected sets that we study in this paper. The latter
carries the information that we want, as we are looking for
lapses in perfectness, so we only plot I(e) hereafter. Inciden-
tally, the MST and NNG constructs contain other informa-
tion that is useful for dynamical analysis. Their branching
structure can be used to identify orbit types in dynamical
systems @Yip ~1991!# and discontinuities in bubble-chamber
tracks @Zahn ~1971!#, as discussed further at the end of this
paper, and they are widely used in the kinds of clustering
tasks that arise in pattern recognition @Duda and Hart ~1973!#

and computer vision @Ballard and Brown ~1982!#.
Because orbits of continuous-time dynamical systems

are, in theory, perfect sets, any isolated points on such an

orbit are an aberration. Noise is one potential cause of this;
consider an intermittent glitch in a sensor ~or an error in an
algorithm! that adds noise to some subset of points in the
orbit—a situation, as indicated in the lead paragraph, that is
quite common in physics experiments. In order to explore
this effect, we added noise to the time-series data from Fig.
2, redid the embedding, repeated the topological analysis,
and observed the effects on the I(e) plots. Figure 3 shows a
representative set of results. The spanning tree clearly brings
out the displacement of the noisy points from the rest of the
orbit: if the magnitude of the noise is large compared to the
interpoint spacing, the edges joining the noisy points to the
rest of the tree are longer than the original edges, which
creates an extra shoulder on the I and C curves. Of course, if
the magnitude of the noise is small compared to that spacing,
the associated MST edges will not be unusually long, and so
the I and C curves will not have an extra shoulder. Figure 4
demonstrates this, showing I(e) plots for different magni-
tudes and types of noise. In particular, part ~a! of the figure
shows the effects of constant noise, where a fixed value
(6n) was added to roughly 1% of the original time-series

FIG. 2. Topology of the Lorenz attractor: ~a! trajectory reconstructed via delay coordinate embedding from the x component of a 9000-step fourth order
Runge–Kutta integration of the Lorenz equations, starting from the initial condition (x ,y ,z)5(211,212,45), with a516, r550, b54, and Dt50.0005.
Embedding parameters were m57 and t50.05; in this 2D rendering, x(t1t) is plotted against x(t). The MST of this trajectory, shown in part ~b!, is visually
indistinguishable from the orbit shown in part ~a! because of the small time step. The C(e) and I(e) plots in parts ~c! and ~d! indicate that the underlying orbit
is connected and perfect.
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points. The width of the shoulder increases with n, reflecting
the wider distribution of MST edge lengths that results when
the noise-added points are embedded. ~Note that any or all of
the coordinates of a given embedded point may include
noise, so points do not simply move 6n along one axis of

the reconstruction space.! Different types of noise, e.g., uni-
form, where we added some number between n and m, for
different @n, m#, or Gaussian, with different ss and x̄s , make
the shape of the falloff slightly more irregular, but do not

FIG. 3. The effects of noise upon attractor topology. Each point in the
original Lorenz time series from the previous figure was perturbed, with
probability 0.01, by a value of 61.0, which is roughly 2% of the overall
width of the reconstructed attractor. These noise-added data were then em-
bedded to obtain the trajectory shown in ~a!. The minimal spanning tree of
this set, pictured in ~b!, clearly shows the noisy points, as does the I(e) plot
in part ~c!, where the noise adds a shoulder to the curve of Fig. 2~d!. en can
be interpreted as approximating the maximum edge length of the MST of the
non-noisy data.

FIG. 4. Effects of noise distribution upon I(e). ~a! Constant noise:
6xnoise5n was added to each x in the original Lorenz time series, with
probability 0.01, for various n. ~b! Uniform random noise: 6xnoiseP@n ,m#

was added to each x, with probability 0.01, for various n and m. All values
in @n, m# were chosen with equal probability. ~c! Gaussian noise: 6xnoise was
added to each x, with probability 0.01. The mean and standard deviation of
xnoise were varied as shown. In all cases, noise adds recognizable shoulders
to the plots.
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change the general shape of the shoulder. In all cases, the
larger the noise, the wider the shoulder. Again, this makes
sense; larger noise values push points further from their
original position on the true orbit, which means that they will
remain e-isolated until e is quite large. ~This is equivalent to
the claim above about the effects of ‘‘small’’ noise on the
MST.! Of course, the direction of the noise vector also mat-
ters. If a noise-added point happens to fall near another
point, e.g., if the noise vector is along the trajectory, rather
than in a transverse direction, the associated MST edge will
not distinguish it from the non-noisy points. There are some
ways around this, as described later in this paper. This meth-
od’s reliance on separation of scale makes it powerful, but
does give it an Achilles heel: if there is a continuous spread
of additive noise, there is no longer a separation of scale, and
so the MST cannot identify noisy points. Nonetheless, the
noisy data sets in Fig. 4 are representative of a broad class of
potential disturbances in physical experiments; they contain
instances of the pathological, difficult-to-detect cases men-
tioned above—small noise magnitudes and along-the-orbit
noise—and so they provide a useful set of test cases for this
paper. Incidentally, we use embedded data in these examples,
rather than the full state-space trajectories produced by the
integrator, because we were interested in evaluating the util-
ity of these techniques for experimental data, and dynamical
systems are rarely observable in practice. ~In what control
theory calls an observable system, one can either measure or
deduce values for every state variable.!

The obvious differences between the I(e) curves in Figs.
2 and 3 suggest a topology-based filtering scheme. Specifi-
cally, a breakpoint in the falloff region of the curve ~indi-
cated by en in Fig. 3!, followed by a second hump, indicates
that there is a scale separation in the data set. That is, the
MST edge length distribution has two peaks, one below en

and one above it. Such a separation of scale can arise if two
processes are at work in the data—such as signal and noise.
If the noise is large compared to the sample spacing of the
data, we can take advantage of that scale separation in order
to disentangle the two. The breakpoint en , in this case, can
be interpreted as approximating the maximum edge length of
the MST of the non-noisy data. At that value, most of the
noisy points—and few of the regular points—are e-isolated.
One can easily discard the noisy points by pruning the ap-
propriate edges of the MST: those that are longer than the
breakpoint value en . Figure 5 shows the results of this fil-
tering technique, as applied to the data from Fig. 3. Using
e50.3 ~slightly above the en breakpoint from Fig. 3! to
prune the minimal spanning tree, this method removed 534
of the 545 noisy points and 150 of the 7856 non-noisy
points. This translates to 98.0% success with a 1.9% false
positive rate, and a signal-to-noise ratio @SNR
520 log10(signal/noise)# reduction from 23.2 dB to 56.9 dB.
These rates vary slightly for different types and amounts of
noise, but the success and false-positive percentages remain
close to 100% and 0%, respectively, and the SNR of the
filtered data is substantially larger than that of the noisy data;
see Table I. These are promising numbers—comparable to or
better than the existing filtering schemes described in the
Introduction. Increasing the pruning length, as one would

predict, decreases the false-positive rate; somewhat less in-
tuitively, though, larger pruning lengths do not appear to sig-
nificantly affect the success rate—until they become compa-
rable to the length scales of the noise. Incidentally, the exact
details of the pruning algorithm are somewhat more subtle
than is implied above because not all noisy points are termi-
nal nodes of the spanning tree. Thus, an algorithm that sim-
ply deletes all points whose connections to the rest of the
tree are longer than the pruning length can sever connections
to other points, or clusters of points. This is an issue if one
noisy point creates a ‘‘bridge’’ to another noisy point and
only one of the associated MST edges is longer than en .
Lastly, note that while noise was added to each point in the
scalar time-series data with probability 0.01, each of those
data points is a coordinate of m points in an m-dimensional
embedding, so roughly m% of the points in the embedded
trajectory are noisy.

Another way to evaluate this filtering method is to use
dynamical invariants, e.g., to compare the Lyapunov expo-
nent l of the original, noise-added, and filtered trajectories.
Table II shows these results, calculated with an IDL imple-
mentation of Wolf’s algorithm @Wolf ~1986!#. As is well
known, noise not only increases the dimension of an orbit,
but also affects its l. This effect, which is described nicely in
Brown ~1993! and Bryant and Brown ~1990!, is abundantly
clear from the third column of the table. Ideally, filtering out
the noise would reduce l back to the original value. In prac-
tice, all of these calculations—and the comparison to the l of
the original trajectory— are somewhat problematic, as nu-
merical algorithms for calculating l are notoriously sensitive
to orbit length, initial conditions, and other dynamical, algo-
rithmic, and computational parameters. For instance, if the
initial conditions of the trajectory used to generate Fig. 2~a!

are varied slightly—60.1 on each of the three state variables
x, y, and z—the calculated l ranges from 0.125 to 0.422, in
spite of the temporal averaging performed by Wolf’s algo-
rithm. If the initial condition is fixed at the values used in
Fig. 2 and the orbit length is varied from 5000 to 30000, the
calculated l ranges from 0.11 to 0.86. The l of the embed-
ded trajectory—which should be equal to the original l if the
embedding dimension is adequate—varies as shown in Table
III. Since the dimension of the Lorenz system is three, the
Whitney/Mañé/Takens conditions require that m>7, in the
worst case, for a successful embedding, though Sauer et al.
suggest that m<dA , where dA is the box-counting dimen-
sion, is sufficient @Sauer et al. ~1991!#. The l values in the
table do indeed appear to settle out—around m56 or 7—but
to a value that is significantly lower than those calculated for
the full xyz trajectory. All of this variation makes it hard to
know what to compare the values in the rightmost column of
Table II against. Furthermore, removing points affects the l

calculation. Wolf’s algorithm proceeds by identifying a
point’s nearest neighbor, then following the point pair until
their spacing exceeds a heuristic threshold, then renormaliz-
ing by finding a new near neighbor ~in the direction of the
vector of the last separation!, and repeating to the end of the
trajectory. Removing points from that trajectory will neces-
sarily force the near-neighbor search to return artificially dis-
tant results, with unpredictable effects upon the calculated l.
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To explore this effect, we randomly removed 700 of the
points in the trajectory of Fig. 2—the same number that were
removed, on the average, in our pruning experiments—and
reran the calculation. Over ten such trials, l ranged from 1.9
to 2.7, so it appears that removing points, in general, raises
l. All of these experiments make it clear that the error bars
of Wolf’s algorithm, especially as applied to data sets with
pointwise gaps, are substantial. @This is not a new result, nor
a unique feature of this algorithm; Brown ~1993! discusses
this issue, comparing and contrasting several l-calculation

algorithms.# In this context, it appears that our filtering
method works very well, though not perfectly: the l values
for the filtered data are dramatically smaller than those for
the noisy data, and not hugely different from the range of
‘‘true’’ l values. This corroborates the success/false positive
percentages given in the previous paragraph, and confirms
that this topology-based filtering scheme is indeed effective
at removing noise without disturbing the dynamics.

Removing noise that one has artificially added to a tra-
jectory is a useful first test, but it is certainly not the intended

FIG. 5. Topology-based filtering of the Lorenz data: the original data @cf. Fig. 2~a!# are shown at the top and the noise-added version of that data from Fig.
3~a! appears in the middle. The filtered data in the bottom image were obtained by pruning the MST of Fig. 3~b! using e50.3—a value just above the en

breakpoint in part ~c! of Fig. 3. Using this pruning value, the topology-based filtering algorithm removes 98% of the noisy points, with a false-positive rate
of 1.9%.
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use of this filtering method. The real applications are sensor
data from physical experiments. ~The problems caused by
floating-point arithmetic limitations are comparatively minor
on modern machines.! Figure 6 shows an instance of such an
application: an experimental data set from a parametrically
forced pendulum. The sampling rate in this data set was
much faster than the highest frequency of the dynamics, but
the angle sensor was intermittently noisy, and so the data set
contains some outlying points. These are difficult to discern
in the trajectory of part ~a! because of the scales involved,
but the minimal spanning tree in part ~b! makes them clearly
visible. The I(e) curve is somewhat more complicated than
in the Lorenz examples: it has a well-defined shoulder run-
ning from log e'21.5 to '20.5, followed by a stair-step
falloff for log e.20.5. As described earlier in this paper, this
kind of pattern can be an indication that the set is a discon-
nected fractal. In this case, however, it is probably an artifact
of the quantization of the angle sensor, which can only mea-
sure to 0.7°, coupled with the effects of embedding upon
noisy data ~i.e., that noise can appear in more than one com-
ponent of the embedding vector!.

Filtering these data as in the Lorenz example, we delete
all points that are e-isolated, using a log e value of 21.4,
which is slightly above the breakpoint en of the I(e) curve
shown in part ~c!. The results are shown in Fig. 7. Obviously,

we cannot give percentage comparisons here, as we do not
know which of the original points are noisy. A visual com-
parison of Figs. 6~b! and 7~b!, however—particularly the
MST closeups—suggests that most of the noisy points have
been removed; note the absence of transverse ‘‘hairs’’ in the
MST of the filtered data. @Again, comparing parts ~a! of these
figures requires good eyesight; these plots are shown here
mainly for context for the MSTs.# Moreover, the absence of
a shoulder on the I(e) plot in Fig. 7~d! suggests that the
filtered trajectory is continuous and perfect—as it should be,
given that the pendulum is a continuous-time dynamical sys-
tem, and that the sampling interval is small. All in all, these
results are quite promising.

Oversampling is critical to the implementation of this
approach for a variety of reasons, all of which stem from the
mathematics of continuity. Undersampling destroys perfect-
ness; in sparsely sampled data, MST edges not only skip
over unsampled chunks of the attractor, but can even jump
crosswise from one attractor thread to another instead of con-
necting points along the orbit. A related issue is our simplis-
tic filtering model: we simply remove the point; we do not
deduce where it ‘‘should be’’ and move it in that direction.
This is obviously a bad idea if the data are not oversampled.
One way to improve on this filtering model would be to
exploit the characteristic geometric properties of dynamical
systems, as in the schemes outlined in the first paragraph of
this paper, e.g., to interpolate between the two points on

TABLE I. Effect of noise on the filtering algorithm. Noise parameters as in previous figure; pruning length
50.3 throughout. Signal-to-noise ratio SNR520 log10(signa/noise).

Noise type Parameters

SNR of
noisy

data ~dB!

% Noisy
points

removed

SNR of
filtered

data ~dB!

% Non-noisy
points

removed

Constant 0.5 23.8 100 ` 2.1
Constant 1 23.2 98.0 56.9 1.9
Constant 2 22.1 97.7 54.7 2.1
Constant 3 23.7 99.4 68.2 1.9

Uniform @0.5 4# 22.3 100 ` 2.5
Uniform @2 4# 23.2 98.7 60.8 2.1
Uniform @2 6# 23.7 100 ` 2.1

Gaussian s51, x̄53 23.5 100 ` 2.1
Gaussian s51.75, x̄52.25 23.6 96.0 51.3 2.0
Gaussian s52, x̄54 23.5 97.9 56.9 2.0

TABLE II. Effects of noise and filtering on the Lyapunov exponent, as
calculated by Wolf’s algorithm. Noise type and parameters as in Fig. 4. The
l of the original trajectory is discussed in the text.

Noise type Parameters l of noisy data l of filtered data

Constant 0.5 8.7 3.2
Constant 1 35.5 3.2
Constant 2 82.2 3.4
Constant 3 81.3 2.9

Uniform @0.5 4# 68.9 2.8
Uniform @2 4# 81.9 4.7
Uniform @2 6# 90.7 3.0

Gaussian s51, x̄53 73.5 2.9
Gaussian s51.75, x̄52.25 68.2 2.5
Gaussian s52, x̄54 78.2 3.5

TABLE III. Lyapunov exponent of delay-coordinate reconstructions of the
Lorenz data from Fig. 2 with different embedding dimensions.

Embedding
dimension l

2 0.938
3 0.685
4 0.236
5 0.114
6 0.096
7 0.082
8 0.059
9 0.096

10 0.097
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either side of the base of the edge that connects an isolated
point to the rest of the trajectory. There are other ways to
leverage continuity, both in identifying noisy points and re-
constructing where they should have been. Any displacement
transverse to the orbit, for example, is a clear suspect for
noise. Zahn ~1971! exploits this to prune noisy points from

bubble chamber data, using the local structure of the minimal
spanning tree to identify points that are not ‘‘on the main
tracks.’’ In an even earlier application, Clark and Miller
~1966! use MSTs to link sequences of spark-chamber images
by iteratively removing the short, terminal ‘‘hairs’’ on the
tree. Incorporating temporal information may also be help-

FIG. 6. Experimental driven pendulum data. ~a! 99800 measurements of the bob angle u, sampled every 265 microseconds by an optical encoder with a
resolution of 0.7°, and embedded in @0,2p)7 with t50.0265 s. ~b! MST and ~c! I(e) of the embedded pendulum trajectory. In these 2D renderings, u(t
1t) is plotted against u(t). The stair-steps in the I(e) plot for log e.20.5 are due in part to sensor quantization and in part to points where noise appears
in more than one dimension of the embedding vector.
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ful; our current scheme only uses the geometry and topology
of the data, disregarding which points were close in time—
which can be an effective indication of continuity ~and vio-
lations thereof!. Adding time as an additional dimension in
the distance metric used in the MST would address this. We
are working out a sensible formalization of all of these ideas
within our computational topology framework, and will re-
port upon their results in a future paper. In the meantime, this
preliminary implementation works quite well, and it is gen-

erally far easier to oversample a physical system than to fix
the source of the noise.

Quantization has complicated and interesting effects
upon variable-resolution topology. Data quantization implies
distance metric quantization, so MST edges can only take on
discrete lengths. Moreover, in raster images, noise does not
move points around, as it does in the examples in this paper;
rather, it simply reshades pixels. The computer vision com-
munity @Ballard and Brown ~1982!# distinguishes these two

FIG. 7. Filtered pendulum data, obtained by removing all e-isolated points from the data in the previous figure, with log e521.4 chosen just above the first
breakpoint of the associated I(e) curve.
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kinds of noise as ‘‘distortion’’ and ‘‘salt and pepper,’’ respec-
tively. Because the metric used in the MST captures dis-
tances between points, it is more effective at detecting the
former than the latter.

III. CONCLUSION

The filtering method introduced in this paper exploits the
fundamental topological properties of continuous-time dy-
namical systems in order to find and remove noisy points
from a data set. v-limit sets of these systems are, in theory,
perfect sets, that is, they contain no isolated points. In prac-
tice, however, the numerical representation of an orbit fails
to be perfect because of finite sampling and/or additive
noise. The approach described here uses a variable-resolution
approach to computational topology in order to work around
the sampling effects and effectively identify the isolated,
noisy points, and then remove them. ~This only works if the
underlying system is a flow, of course; orbits of maps need
not be perfect.! Experiments with clean Lorenz data contami-
nated with various forms of noise showed encouraging re-
sults: the topology-based filter identified 96–100% of the
noisy points, improving the signal-to-noise ratio from '20
dB to more than 50 dB, with a false-positive rate of 1.9–
2.5%. Data from a laboratory apparatus—a parametrically
forced pendulum—showed equally encouraging results,
though of course one cannot quantify noise percentages or
ratios in real-world data.

There have been a few other topology-based approaches
to dynamical systems analysis. Our use of the minimal span-
ning tree as a data structure was inspired by Yip’s work on
automated phase-portrait analysis @Yip ~1991!#. Mischaikow
et al. ~1999! use algebraic topology to construct a symbol
dynamics from trajectory data. This neatly finesses the noise
issue by using a coarser representation, and thus constitutes a
form of filtering. Rather than use algebraic topology to con-
struct a useful coarse-grained representation of the dynamics,
our approach uses geometric topology to remove noisy
points while working in the original space, which allows us
to obtain much finer-grained results. Muldoon et al. compute
the homology of embedded attractors @Muldoon et al.
~1993!#. This approach does not address noise directly, but
does describe how to build a triangulation from time-series
data, and then computes many of the same topological quan-
tities that are used in our broader work. Mees ~1992! uses
tesselations to find the dimension of the state space, along
with information about folds and branches in the attractor,
leading to a method for reconstruction of models of the dy-
namics. Mindlin and Gilmore also use topological
techniques—templates and knots in particular—to model the
stretching/squeezing dynamics on a chaotic attractor @Mind-
lin and Gilmore ~1992!#. Lastly, approaches that are based on
unstable periodic orbits @Auerbach et al. ~1987! and
Gunaratne et al. ~1989!# could also be viewed as topological.

The key feature of the method proposed here is its iden-
tification of separation of scale: if the magnitude of the noise
is greater than the interpoint spacing, the variable-resolution
topological analysis described in this paper will bring that
out. Conversely, noise that is of the order of the separation

between the points in the data set, or less, does not produce
an e-isolated point, and thus cannot be identified or removed
by this method. For these reasons, this method requires that
the time series be oversampled, and it does not apply to
discrete-time dynamical systems. Filtering schemes have dif-
ferent weaknesses, but all are vulnerable to small noise mag-
nitudes, and the method described here is no exception. Like
most others, too, topology-based filtering works only for ad-
ditive noise, not dynamic noise, which is coupled back into
system evolution ~e.g., an error in an ODE solver, which
affects the initial condition for the next step!. Because of its
reliance on separation of scale, too, this approach does not
work if the additive noise has a continuous spread. Lastly,
like most of the other methods described in the dynamical
systems literature, this scheme is noncausal, in the sense that
its algorithms require both past and future values of the tra-
jectory in order to filter out a particular noisy point. As it is
currently implemented, this method simply discards noisy
points; we are working on modifications that remove that
restriction by selectively adding geometric knowledge to the
algorithm so it can be more intelligent about detecting and
adjusting noisy points. Separation of scale is fundamental to
many other forms of signal that one might be interested in
untangling, so this method is by no means limited to dynami-
cal systems—or to filtering applications.
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